Huang Xiaofen, Zhang Tinggui, Zhao Ming-Jing, Jing Naihuan
School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China.
Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, Haikou 571158, China.
Entropy (Basel). 2022 Aug 2;24(8):1064. doi: 10.3390/e24081064.
Entanglement as a vital resource for information processing can be described by special properties of the quantum state. Using the well-known Weyl basis we propose a new Bloch decomposition of the quantum state and study its separability problem. This decomposition enables us to find an alternative characterization of the separability based on the correlation matrix. We show that the criterion is effective in detecting entanglement for the isotropic states, Bell-diagonal states and some PPT entangled states. We also use the Weyl operators to construct an detecting operator for quantum teleportation.
作为信息处理重要资源的纠缠可以用量子态的特殊性质来描述。利用著名的外尔基,我们提出了一种新的量子态布洛赫分解,并研究其可分性问题。这种分解使我们能够基于相关矩阵找到可分性的另一种表征。我们表明,该判据在检测各向同性态、贝尔对角态和一些PPT纠缠态的纠缠方面是有效的。我们还利用外尔算符构造了一个量子隐形传态的检测算符。