Suppr超能文献

基于两阶段信息准则的多目标检测波形设计

Waveform Design for Multi-Target Detection Based on Two-Stage Information Criterion.

作者信息

Xiao Yu, Hu Xiaoxiang

机构信息

School of Automation, Northwestern Polytechnical University, Xi'an 710072, China.

Air and Missile Defense College, Air Force Engineering University, Xi'an 710051, China.

出版信息

Entropy (Basel). 2022 Aug 3;24(8):1075. doi: 10.3390/e24081075.

Abstract

Parameter estimation accuracy and average sample number (ASN) reduction are important to improving target detection performance in sequential hypothesis tests. Multiple-input multiple-output (MIMO) radar can balance between parameter estimation accuracy and ASN reduction through waveform diversity. In this study, we propose a waveform design method based on a two-stage information criterion to improve multi-target detection performance. In the first stage, the waveform is designed to estimate the target parameters based on the criterion of single-hypothesis mutual information (MI) maximization under the constraint of the signal-to-noise ratio (SNR). In the second stage, the objective function is designed based on the criterion of MI minimization and Kullback-Leibler divergence (KLD) maximization between multi-hypothesis posterior probabilities, and the waveform is chosen from the waveform library of the first-stage parameter estimation. Furthermore, an adaptive waveform design algorithm framework for multi-target detection is proposed. The simulation results reveal that the waveform design based on the two-stage information criterion can rapidly detect the target direction. In addition, the waveform design based on the criterion of dual-hypothesis MI minimization can improve the parameter estimation performance, whereas the design based on the criterion of dual-hypothesis KLD maximization can improve the target detection performance.

摘要

在序贯假设检验中,参数估计精度和平均样本数(ASN)的减少对于提高目标检测性能至关重要。多输入多输出(MIMO)雷达可以通过波形分集在参数估计精度和ASN减少之间取得平衡。在本研究中,我们提出了一种基于两阶段信息准则的波形设计方法,以提高多目标检测性能。在第一阶段,在信噪比(SNR)约束下,基于单假设互信息(MI)最大化准则设计波形来估计目标参数。在第二阶段,基于多假设后验概率之间的MI最小化和库尔贝克-莱布勒散度(KLD)最大化准则设计目标函数,并从第一阶段参数估计的波形库中选择波形。此外,还提出了一种用于多目标检测的自适应波形设计算法框架。仿真结果表明,基于两阶段信息准则的波形设计能够快速检测目标方向。此外,基于双假设MI最小化准则的波形设计可以提高参数估计性能,而基于双假设KLD最大化准则的设计可以提高目标检测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/940d/9407354/e8f62ff80bb0/entropy-24-01075-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验