Xiao Yu, Hu Xiaoxiang
School of Automation, Northwestern Polytechnical University, Xi'an 710072, China.
Air and Missile Defense College, Air Force Engineering University, Xi'an 710051, China.
Entropy (Basel). 2022 Aug 3;24(8):1075. doi: 10.3390/e24081075.
Parameter estimation accuracy and average sample number (ASN) reduction are important to improving target detection performance in sequential hypothesis tests. Multiple-input multiple-output (MIMO) radar can balance between parameter estimation accuracy and ASN reduction through waveform diversity. In this study, we propose a waveform design method based on a two-stage information criterion to improve multi-target detection performance. In the first stage, the waveform is designed to estimate the target parameters based on the criterion of single-hypothesis mutual information (MI) maximization under the constraint of the signal-to-noise ratio (SNR). In the second stage, the objective function is designed based on the criterion of MI minimization and Kullback-Leibler divergence (KLD) maximization between multi-hypothesis posterior probabilities, and the waveform is chosen from the waveform library of the first-stage parameter estimation. Furthermore, an adaptive waveform design algorithm framework for multi-target detection is proposed. The simulation results reveal that the waveform design based on the two-stage information criterion can rapidly detect the target direction. In addition, the waveform design based on the criterion of dual-hypothesis MI minimization can improve the parameter estimation performance, whereas the design based on the criterion of dual-hypothesis KLD maximization can improve the target detection performance.
在序贯假设检验中,参数估计精度和平均样本数(ASN)的减少对于提高目标检测性能至关重要。多输入多输出(MIMO)雷达可以通过波形分集在参数估计精度和ASN减少之间取得平衡。在本研究中,我们提出了一种基于两阶段信息准则的波形设计方法,以提高多目标检测性能。在第一阶段,在信噪比(SNR)约束下,基于单假设互信息(MI)最大化准则设计波形来估计目标参数。在第二阶段,基于多假设后验概率之间的MI最小化和库尔贝克-莱布勒散度(KLD)最大化准则设计目标函数,并从第一阶段参数估计的波形库中选择波形。此外,还提出了一种用于多目标检测的自适应波形设计算法框架。仿真结果表明,基于两阶段信息准则的波形设计能够快速检测目标方向。此外,基于双假设MI最小化准则的波形设计可以提高参数估计性能,而基于双假设KLD最大化准则的设计可以提高目标检测性能。