Suppr超能文献

一种基于变分模态分解和高效通道注意力的智能故障诊断深度迁移学习新方法。

A Novel Deep Transfer Learning Method for Intelligent Fault Diagnosis Based on Variational Mode Decomposition and Efficient Channel Attention.

作者信息

Liu Caiming, Zheng Xiaorong, Bao Zhengyi, He Zhiwei, Gao Mingyu, Song Wenlong

机构信息

School of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018, China.

Zhejiang Provincial Key Lab of Equipment Electronics, Hangzhou 310018, China.

出版信息

Entropy (Basel). 2022 Aug 6;24(8):1087. doi: 10.3390/e24081087.

Abstract

In recent years, deep learning has been applied to intelligent fault diagnosis and has achieved great success. However, the fault diagnosis method of deep learning assumes that the training dataset and the test dataset are obtained under the same operating conditions. This condition can hardly be met in real application scenarios. Additionally, signal preprocessing technology also has an important influence on intelligent fault diagnosis. How to effectively relate signal preprocessing to a transfer diagnostic model is a challenge. To solve the above problems, we propose a novel deep transfer learning method for intelligent fault diagnosis based on Variational Mode Decomposition (VMD) and Efficient Channel Attention (ECA). In the proposed method, the VMD adaptively matches the optimal center frequency and finite bandwidth of each mode to achieve effective separation of signals. To fuse the mode features more effectively after VMD decomposition, ECA is used to learn channel attention. The experimental results show that the proposed signal preprocessing and feature fusion module can increase the accuracy and generality of the transfer diagnostic model. Moreover, we comprehensively analyze and compare our method with state-of-the-art methods at different noise levels, and the results show that our proposed method has better robustness and generalization performance.

摘要

近年来,深度学习已应用于智能故障诊断并取得了巨大成功。然而,深度学习的故障诊断方法假定训练数据集和测试数据集是在相同运行条件下获得的。在实际应用场景中,这一条件很难满足。此外,信号预处理技术对智能故障诊断也有重要影响。如何有效地将信号预处理与迁移诊断模型联系起来是一个挑战。为了解决上述问题,我们提出了一种基于变分模态分解(VMD)和高效通道注意力(ECA)的新型智能故障诊断深度迁移学习方法。在所提出的方法中,VMD自适应地匹配各模态的最优中心频率和有限带宽,以实现信号的有效分离。为了在VMD分解后更有效地融合模态特征,则使用ECA来学习通道注意力。实验结果表明,所提出的信号预处理和特征融合模块可以提高迁移诊断模型的准确性和通用性。此外,我们在不同噪声水平下将我们的方法与现有方法进行了全面的分析和比较,结果表明我们提出的方法具有更好的鲁棒性和泛化性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57ea/9407064/9c243967e890/entropy-24-01087-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验