Sadiki Amsini, Agrebi Senda, Ries Florian
Institute of Reactive Flows and Diagnostics, Technical University of Darmstadt, 64287 Darmstadt, Germany.
Laboratoire de Modélisation Mécanique, Energétique et Matériaux, ISTA-Kinshasa, Avenue Aérodrome N° 3930, Commune de Barumbu, Kinshasa BP 6593, Democratic Republic of the Congo.
Entropy (Basel). 2022 Aug 10;24(8):1099. doi: 10.3390/e24081099.
This paper provides a review of different contributions dedicated thus far to entropy generation analysis (EGA) in turbulent combustion systems. We account for various parametric studies that include wall boundedness, flow operating conditions, combustion regimes, fuels/alternative fuels and application geometries. Special attention is paid to experimental and numerical modeling works along with selected applications. First, the difficulties of performing comprehensive experiments that may support the understanding of entropy generation phenomena are outlined. Together with practical applications, the lumped approach to calculate the total entropy generation rate is presented. Apart from direct numerical simulation, numerical modeling approaches are described within the continuum formulation in the framework of non-equilibrium thermodynamics. Considering the entropy transport equations in both Reynolds-averaged Navier-Stokes and large eddy simulation modeling, different modeling degrees of the entropy production terms are presented and discussed. Finally, exemplary investigations and validation cases going from generic or/and canonical configurations to practical configurations, such as internal combustion engines, gas turbines and power plants, are reported. Thereby, the areas for future research in the development of EGA for enabling efficient combustion systems are highlighted. Since EGA is known as a promising tool for optimization of combustion systems, this aspect is highlighted in this work.
本文综述了迄今为止在湍流燃烧系统中对熵产分析(EGA)所做的不同贡献。我们考虑了各种参数研究,包括壁面限制、流动运行条件、燃烧工况、燃料/替代燃料以及应用几何形状。特别关注了实验和数值模拟工作以及选定的应用。首先,概述了进行全面实验以支持对熵产现象理解的困难。结合实际应用,介绍了计算总熵产率的集总方法。除了直接数值模拟外,在非平衡热力学框架下的连续介质表述中描述了数值模拟方法。考虑雷诺平均纳维 - 斯托克斯方程和大涡模拟中的熵输运方程,给出并讨论了熵产生项的不同建模程度。最后,报告了从通用或/和典型构型到实际构型(如内燃机、燃气轮机和发电厂)的示例性研究和验证案例。从而突出了在开发用于实现高效燃烧系统的EGA方面未来的研究领域。由于EGA被认为是优化燃烧系统的一种有前途的工具,因此在这项工作中突出了这一方面。