Skiba Iaroslav, Kopanitsa Georgy, Metsker Oleg, Yanishevskiy Stanislav, Polushin Alexey
Department of Chemotherapy and Stem Cell Transplantation for Cancer and Autoimmune Diseases, First Pavlov State Medical University of St. Peterburg, 197022 Saint Petersburg, Russia.
Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia.
J Pers Med. 2022 Aug 11;12(8):1306. doi: 10.3390/jpm12081306.
Machine learning methods to predict the risk of epilepsy, including vascular epilepsy, in oncohematological patients are currently considered promising. These methods are used in research to predict pharmacoresistant epilepsy and surgical treatment outcomes in order to determine the epileptogenic zone and functional neural systems in patients with epilepsy, as well as to develop new approaches to classification and perform other tasks. This paper presents the results of applying machine learning to analyzing data and developing diagnostic models of epilepsy in oncohematological and cardiovascular patients. This study contributes to solving the problem of often unjustified diagnosis of primary epilepsy in patients with oncohematological or cardiovascular pathology, prescribing antiseizure drugs to patients with single seizure syndromes without finding a disease associated with these cases. We analyzed the hospital database of the V.A. Almazov Scientific Research Center of the Ministry of Health of Russia. The study included 66,723 treatment episodes of patients with vascular diseases (I10-I15, I61-I69, I20-I25) and 16,383 episodes with malignant neoplasms of lymphoid, hematopoietic, and related tissues (C81-C96 according to ICD-10) for the period from 2010 to 2020. Data analysis and model calculations indicate that the best result was shown by gradient boosting with mean accuracy cross-validation score = 0.96. f1-score = 98, weighted avg precision = 93, recall = 96, f1-score = 94. The highest correlation coefficient for G40 and different clinical conditions was achieved with fibrillation, hypertension, stenosis or occlusion of the precerebral arteries (0.16), cerebral sinus thrombosis (0.089), arterial hypertension (0.17), age (0.03), non-traumatic intracranial hemorrhage (0.07), atrial fibrillation (0.05), delta absolute neutrophil count (0.05), platelet count at discharge (0.04), transfusion volume for stem cell transplantation (0.023). From the clinical point of view, the identified differences in the importance of predictors in a broader patient model are consistent with a practical algorithm for organic brain damage. Atrial fibrillation is one of the leading factors in the development of both ischemic and hemorrhagic strokes. At the same time, brain infarction can be accompanied both by the development of epileptic seizures in the acute period and by unprovoked epileptic seizures and development of epilepsy in the early recovery and in a longer period. In addition, a microembolism of the left heart chambers can lead to multiple microfocal lesions of the brain, which is one of the pathogenetic aspects of epilepsy in elderly patients. The presence of precordial fibrillation requires anticoagulant therapy, the use of which increases the risk of both spontaneous and traumatic intracranial hemorrhage.
目前认为,机器学习方法在预测肿瘤血液学患者患癫痫(包括血管性癫痫)风险方面颇具前景。这些方法被用于研究中,以预测药物难治性癫痫和手术治疗结果,从而确定癫痫患者的致痫区和功能性神经系统,同时开发新的分类方法并执行其他任务。本文介绍了将机器学习应用于分析肿瘤血液学和心血管疾病患者数据以及开发癫痫诊断模型的结果。这项研究有助于解决肿瘤血液学或心血管疾病患者原发性癫痫诊断往往不合理的问题,即在未发现与单一癫痫发作综合征相关疾病的情况下,给患者开抗癫痫药物。我们分析了俄罗斯卫生部V.A. 阿尔马佐夫科研中心的医院数据库。该研究纳入了2010年至2020年期间66723例血管疾病(I10 - I15、I61 - I69、I20 - I25)患者的治疗记录以及16383例淋巴、造血及相关组织恶性肿瘤(根据ICD - 10为C81 - C96)患者的治疗记录。数据分析和模型计算表明,梯度提升算法表现最佳,平均准确率交叉验证分数 = 0.96,F1分数 = 98,加权平均精度 = 93,召回率 = 96,F1分数 = 94。G40与不同临床状况的最高相关系数出现在房颤、高血压、大脑前动脉狭窄或闭塞(0.16)、脑静脉窦血栓形成(0.089)、动脉高血压(0.17)、年龄(0.03)、非创伤性颅内出血(0.07)、心房颤动(0.05)、绝对中性粒细胞计数差值(0.05)、出院时血小板计数(0.04)、干细胞移植输血量(0.023)。从临床角度来看,在更广泛的患者模型中确定的预测因素重要性差异与器质性脑损伤的实用算法一致。心房颤动是缺血性和出血性中风发病的主要因素之一。同时,脑梗死在急性期可能伴有癫痫发作,在早期恢复阶段及更长时间内可能出现不明原因的癫痫发作和癫痫发展。此外,左心腔微栓塞可导致脑部多发性微灶性病变,这是老年患者癫痫发病机制的一个方面。存在心前区颤动需要进行抗凝治疗,而抗凝治疗会增加自发性和创伤性颅内出血的风险。