Suppr超能文献

基于机器学习技术的模拟集成电路封装与测试中的RLC电路预测

RLC Circuit Forecast in Analog IC Packaging and Testing by Machine Learning Techniques.

作者信息

Lai Jung-Pin, Lin Ying-Lei, Lin Ho-Chuan, Shih Chih-Yuan, Wang Yu-Po, Pai Ping-Feng

机构信息

PhD Program in Strategy and Development of Emerging Industries, National Chi Nan University, Nantou 54561, Taiwan.

Siliconware Precision Industries Co., Ltd., No. 123, Sec. 3, Dafeng Rd., Dafeng Vil., Tanzi Dist., Taichung City 42749, Taiwan.

出版信息

Micromachines (Basel). 2022 Aug 12;13(8):1305. doi: 10.3390/mi13081305.

Abstract

For electronic products, printed circuit boards are employed to fix integrated circuits (ICs) and connect all ICs and electronic components. This allows for the smooth transmission of electronic signals among electronic components. Machine learning (ML) techniques are popular and employed in various fields. To capture the nonlinear data patterns and input-output electrical relationships of analog circuits, this study aims to employ ML techniques to improve operations from modeling to testing in the analog IC packaging and testing industry. The simulation calculation of the resistance, inductance, and capacitance of the pin count corresponding to the target electrical specification is a complex process. Tasks include converting a two-dimensional circuit into a three-dimensional one in simulation and modeling-buried structure operations. In this study, circuit datasets are employed for training the ML model to predict resistance (R), inductance (L), and capacitance (C). The least squares support vector regression (LSSVR) with Genetic Algorithms (GA) (LSSVR-GA) serves as an ML model for forecasting RLC values. Genetic algorithms are used to select parameters of LSSVR models. To demonstrate the performance of LSSVR models in forecasting RLC values, three other ML models with genetic algorithms, including backpropagation neural networks (BPNN-GA), random forest (RF-GA), and eXtreme gradient boosting (XGBoost-GA), were employed to cope with the same data. Numerical results illustrated that the LSSVR-GA outperformed the three other forecasting models by around 14.84% averagely in terms of mean absolute percentage error (MAPE), weighted absolute percent error measure (WAPE), and normalized mean absolute error (NMAE). This study collected data from an IC packaging and testing firm in Taiwan. The innovation and advantage of the proposed method is using a machine approach to forecast RLC values instead of through simulation ways, which generates accurate results. Numerical results revealed that the developed ML model is effective and efficient in RLC circuit forecasting for the analog IC packaging and testing industry.

摘要

对于电子产品,印刷电路板用于固定集成电路(IC)并连接所有IC和电子元件。这使得电子信号能够在电子元件之间顺利传输。机器学习(ML)技术很受欢迎,并应用于各个领域。为了捕捉模拟电路的非线性数据模式和输入输出电气关系,本研究旨在采用ML技术改进模拟IC封装和测试行业从建模到测试的操作。对应于目标电气规格的引脚电阻、电感和电容的模拟计算是一个复杂的过程。任务包括在模拟和建模埋入结构操作中将二维电路转换为三维电路。在本研究中,电路数据集用于训练ML模型以预测电阻(R)、电感(L)和电容(C)。带有遗传算法(GA)的最小二乘支持向量回归(LSSVR)(LSSVR-GA)用作预测RLC值的ML模型。遗传算法用于选择LSSVR模型的参数。为了证明LSSVR模型在预测RLC值方面的性能,还采用了其他三种带有遗传算法的ML模型,包括反向传播神经网络(BPNN-GA)、随机森林(RF-GA)和极端梯度提升(XGBoost-GA)来处理相同的数据。数值结果表明,LSSVR-GA在平均绝对百分比误差(MAPE)、加权绝对百分比误差度量(WAPE)和归一化平均绝对误差(NMAE)方面平均比其他三种预测模型高出约14.84%。本研究从台湾的一家IC封装和测试公司收集了数据。所提出方法的创新和优势在于使用机器方法预测RLC值,而不是通过模拟方式,从而产生准确的结果。数值结果表明,所开发的ML模型在模拟IC封装和测试行业的RLC电路预测中是有效且高效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/170f/9413446/3a6dc7756802/micromachines-13-01305-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验