文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

具有多重共振的梯度 SERS 基底用于分析物筛选:制造和 SERS 应用。

Gradient SERS Substrates with Multiple Resonances for Analyte Screening: Fabrication and SERS Applications.

机构信息

Center for Process Analysis and Technology (PA&T), School of Applied Chemistry, Reutlingen University, 72762 Reutlingen, Germany.

Reutlingen Research Institute (RRI), Reutlingen University, 72762 Reutlingen, Germany.

出版信息

Molecules. 2022 Aug 10;27(16):5097. doi: 10.3390/molecules27165097.


DOI:10.3390/molecules27165097
PMID:36014328
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9414786/
Abstract

Surface-enhanced Raman spectroscopy (SERS) provides a strong enhancement to an inherently weak Raman signal, which strongly depends on the material, design, and fabrication of the substrate. Here, we present a facile method of fabricating a non-uniform SERS substrate based on an annealed thin gold (Au) film that offers multiple resonances and gap sizes within the same sample. It is not only chemically stable, but also shows reproducible trends in terms of geometry and plasmonic response. Scanning electron microscopy (SEM) reveals particle-like and island-like morphology with different gap sizes at different lateral positions of the substrate. Extinction spectra show that the plasmonic resonance of the nanoparticles/metal islands can be continuously tuned across the substrate. We observed that for the analytes 1,2-bis(4-pyridyl) ethylene (BPE) and methylene blue (MB), the maximum SERS enhancement is achieved at different lateral positions, and the shape of the extinction spectra allows for the correlation of SERS enhancement with surface morphology. Such non-uniform SERS substrates with multiple nanoparticle sizes, shapes, and interparticle distances can be used for fast screening of analytes due to the lateral variation of the resonances within the same sample.

摘要

表面增强拉曼光谱(SERS)为固有微弱的拉曼信号提供了强烈的增强,这强烈依赖于基底的材料、设计和制造。在这里,我们提出了一种基于退火薄金(Au)膜的简单方法来制造非均匀 SERS 基底,该基底在同一样品中提供了多个共振和间隙尺寸。它不仅具有化学稳定性,而且在几何形状和等离子体响应方面也表现出可重复的趋势。扫描电子显微镜(SEM)显示出具有不同间隙尺寸的颗粒状和岛状形态,位于基底的不同横向位置。消光谱显示,纳米粒子/金属岛的等离子体共振可以在整个基底上连续调谐。我们观察到,对于分析物 1,2-双(4-吡啶基)乙烯(BPE)和亚甲蓝(MB),最大的 SERS 增强在不同的横向位置实现,消光谱的形状允许将 SERS 增强与表面形态相关联。由于同一样品中共振的横向变化,具有多种纳米粒子尺寸、形状和粒子间距离的这种非均匀 SERS 基底可用于分析物的快速筛选。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a142/9414786/c4142dd44819/molecules-27-05097-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a142/9414786/452bcd8391df/molecules-27-05097-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a142/9414786/6717effe3aa3/molecules-27-05097-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a142/9414786/46872c7250ed/molecules-27-05097-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a142/9414786/3421fd067324/molecules-27-05097-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a142/9414786/c4142dd44819/molecules-27-05097-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a142/9414786/452bcd8391df/molecules-27-05097-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a142/9414786/6717effe3aa3/molecules-27-05097-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a142/9414786/46872c7250ed/molecules-27-05097-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a142/9414786/3421fd067324/molecules-27-05097-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a142/9414786/c4142dd44819/molecules-27-05097-g005.jpg

相似文献

[1]
Gradient SERS Substrates with Multiple Resonances for Analyte Screening: Fabrication and SERS Applications.

Molecules. 2022-8-10

[2]
Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.

J Phys Chem B. 2006-9-7

[3]
Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: concave nanocubes, nanotrisoctahedra, and nanostars.

ACS Appl Mater Interfaces. 2014-10-8

[4]
Particle-Film Plasmons on Periodic Silver Film over Nanosphere (AgFON): A Hybrid Plasmonic Nanoarchitecture for Surface-Enhanced Raman Spectroscopy.

ACS Appl Mater Interfaces. 2016-1-13

[5]
Self-assembly of various Au nanocrystals on functionalized water-stable PVA/PEI nanofibers: a highly efficient surface-enhanced Raman scattering substrates with high density of "hot" spots.

Biosens Bioelectron. 2013-10-31

[6]
Chitosan reduced in-situ synthesis of gold nanoparticles on paper towards fabricating highly sensitive, stable uniform SERS substrates for sensing applications.

Int J Biol Macromol. 2023-6-1

[7]
Study of Langmuir-Blodgett phospholipidic films deposited on surface enhanced Raman scattering active gold nanoparticle monolayers.

Biopolymers. 2002

[8]
Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate.

Langmuir. 2012-6-1

[9]
Surface-enhanced Raman spectroscopy-active substrates: adapting the shape of plasmonic nanoparticles for different biological applications.

J Nanosci Nanotechnol. 2014-4

[10]
Gold-capped silicon for ultrasensitive SERS-biosensing: Towards human biofluids analysis.

Mater Sci Eng C Mater Biol Appl. 2017-12-5

引用本文的文献

[1]
Raman Scattering Enhancements Due to Super- and Subradiant Collective Plasmon Modes on Large-Area 2D-Au Arrays.

ACS Appl Mater Interfaces. 2025-6-4

[2]
SERS of nitro group compounds for sensing of explosives.

RSC Adv. 2025-1-2

[3]
Three-Dimensional (3D) Surface-Enhanced Raman Spectroscopy (SERS) Substrates for Sensing Low-Concentration Molecules in Solution.

Nanomaterials (Basel). 2024-10-29

[4]
Self-Organized SERS Substrates with Efficient Analyte Enrichment in the Hot Spots.

ACS Omega. 2024-1-18

本文引用的文献

[1]
Large-scale self-organized gold nanostructures with bidirectional plasmon resonances for SERS.

RSC Adv. 2018-6-21

[2]
Self-assembled nano-Ag/Au@Au film composite SERS substrates show high uniformity and high enhancement factor for creatinine detection.

Nanotechnology. 2021-7-9

[3]
Self-assembly of colloidal nanoparticles into 2D arrays at water-oil interfaces: rational construction of stable SERS substrates with accessible enhancing surfaces and tailored plasmonic response.

Nanoscale. 2021-3-28

[4]
Hypericin: Single Molecule Spectroscopy of an Active Natural Drug.

J Phys Chem A. 2020-3-11

[5]
The role of a plasmonic substrate on the enhancement and spatial resolution of tip-enhanced Raman scattering.

Faraday Discuss. 2019-5-1

[6]
The tuning of the plasmon resonance of the metal nanoparticles in terms of the SERS effect.

Colloid Polym Sci. 2018

[7]
Bile salt induced solubilization of methylene blue: Study on methylene blue fluorescence properties and molecular mechanics calculation.

J Pharm Anal. 2017-2

[8]
Giant gap-plasmon tip-enhanced Raman scattering of MoS monolayers on Au nanocluster arrays.

Nanoscale. 2018-2-8

[9]
Surface- and tip-enhanced Raman spectroscopy reveals spin-waves in iron oxide nanoparticles.

Nanoscale. 2015-6-7

[10]
Enhancing spectral shifts of plasmon-coupled noble metal nanoparticles for sensing applications.

Phys Chem Chem Phys. 2015-1-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索