Rzhanov Institute of Semiconductor Physics RAS, Lavrentiev Ave. 13, 630090, Novosibirsk, Russia.
Nanoscale. 2018 Feb 8;10(6):2755-2763. doi: 10.1039/c7nr06640f.
In this article, we present the results of a gap-plasmon tip-enhanced Raman scattering study of MoS monolayers deposited on a periodic array of Au nanostructures on a silicon substrate forming a two dimensional (2D) crystal/plasmonic heterostructure. We observe a giant Raman enhancement of the phonon modes in the MoS monolayer located in the plasmonic gap between the Au tip apex and Au nanoclusters. Tip-enhanced Raman mapping allows us to determine the gap-plasmon field distribution responsible for the formation of hot spots. These hot spots provide an unprecedented giant Raman enhancement of 5.6 × 10 and a spatial resolution as small as 2.3 nm under ambient conditions. Moreover, due to strong hot electron doping in the order of 1.8 × 10 cm, we observe a structural change of MoS from the 2H to the 1T phase. Owing to the very good spatial resolution, we are able to spatially resolve those doping sites. To the best of our knowledge, this is the first time reporting of such a phenomenon with nm spatial resolution. Our results will open the perspectives of optical diagnostics with nanometer resolution for many other 2D materials.
在本文中,我们展示了在硅衬底上形成二维(2D)晶体/等离子体异质结构的周期性 Au 纳米结构上沉积的 MoS 单层的间隙等离子体尖端增强拉曼散射研究的结果。我们观察到位于 Au 尖端顶点和 Au 纳米团簇之间的等离子体间隙中的 MoS 单层中声子模式的巨大拉曼增强。尖端增强拉曼映射使我们能够确定负责形成热点的间隙等离子体场分布。这些热点在环境条件下提供了前所未有的巨大拉曼增强,高达 5.6×10,空间分辨率低至 2.3nm。此外,由于在 1.8×10cm 的 orders 中存在强烈的热电子掺杂,我们观察到 MoS 从 2H 相到 1T 相的结构变化。由于非常好的空间分辨率,我们能够在空间上分辨出那些掺杂位点。据我们所知,这是首次在 nm 空间分辨率下报告这种现象。我们的结果将为许多其他 2D 材料的纳米分辨率光学诊断开辟前景。