Schreiber Benjamin, Gkogkou Dimitra, Dedelaite Lina, Kerbusch Jochen, Hübner René, Sheremet Evgeniya, Zahn Dietrich R T, Ramanavicius Arunas, Facsko Stefan, Rodriguez Raul D
Helmholtz-Zentrum Dresden-Rossendorf Bautzner Landstraße 400 01328 Dresden Germany.
Rudolf Virchow Center, University of Würzburg Josef-Schneider-Str. 2 97080 Würzburg Germany
RSC Adv. 2018 Jun 21;8(40):22569-22576. doi: 10.1039/c8ra04031a. eCollection 2018 Jun 19.
Efficient substrates for surface-enhanced Raman spectroscopy (SERS) are under constant development, since time-consuming and costly fabrication routines are often an issue for high-throughput spectroscopy applications. In this research, we use a two-step fabrication method to produce self-organized parallel-oriented plasmonic gold nanostructures. The fabrication routine is ready for wafer-scale production involving only low-energy ion beam irradiation and metal deposition. The optical spectroscopy features of the resulting structures show a successful bidirectional plasmonic response. The localized surface plasmon resonances (LSPRs) of each direction are independent from each other and can be tuned by the fabrication parameters. This ability to tune the LSPR characteristics allows the development of optimized plasmonic nanostructures to match different laser excitations and optical transitions for any arbitrary analyte. Moreover, in this study, we probe the polarization and wavelength dependence of such bidirectional plasmonic nanostructures by a complementary spectroscopic ellipsometry and Raman spectroscopy analysis. We observe a significant signal amplification by the SERS substrates and determine enhancement factors of over a thousand times. We also perform finite element method-based calculations of the electromagnetic enhancement for the SERS signal provided by the plasmonic nanostructures. The calculations are based on realistic models constructed using the same particle sizes and shapes experimentally determined by scanning electron microscopy. The spatial distribution of electric field enhancement shows some dispersion in the LSPR, which is a direct consequence of the semi-random distribution of hotspots. The signal enhancement is highly efficient, making our SERS substrates attractive candidates for high-throughput chemical sensing applications in which directionality, chemical stability, and large-scale fabrication are essential requirements.
由于耗时且昂贵的制备流程对于高通量光谱应用而言常常是个问题,因此用于表面增强拉曼光谱(SERS)的高效基底一直在不断发展。在本研究中,我们采用两步制备法来生产自组织的平行取向等离子体金纳米结构。该制备流程适用于仅涉及低能离子束辐照和金属沉积的晶圆级生产。所得结构的光谱特征显示出成功的双向等离子体响应。每个方向的局域表面等离子体共振(LSPR)相互独立,并且可以通过制备参数进行调节。这种调节LSPR特性的能力使得能够开发出优化的等离子体纳米结构,以匹配任何任意分析物的不同激光激发和光学跃迁。此外,在本研究中,我们通过互补的光谱椭偏仪和拉曼光谱分析来探究这种双向等离子体纳米结构的偏振和波长依赖性。我们观察到SERS基底有显著的信号放大,并确定了超过一千倍的增强因子。我们还基于有限元方法对等离子体纳米结构提供的SERS信号进行了电磁增强计算。这些计算基于使用扫描电子显微镜实验确定的相同粒径和形状构建的真实模型。电场增强的空间分布在LSPR中显示出一些色散,这是热点半随机分布的直接结果。信号增强非常高效,这使得我们的SERS基底成为高通量化学传感应用中有吸引力的候选者,在这些应用中,方向性、化学稳定性和大规模制造是必不可少的要求。