Suppr超能文献

HHI-AttentionNet:一种基于 CSI 的轻量级深度学习模型和注意力网络的增强型人机交互识别方法。

HHI-AttentionNet: An Enhanced Human-Human Interaction Recognition Method Based on a Lightweight Deep Learning Model with Attention Network from CSI.

机构信息

Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Korea.

Kwangwoon Academy, Kwangwoon University, Seoul 01897, Korea.

出版信息

Sensors (Basel). 2022 Aug 12;22(16):6018. doi: 10.3390/s22166018.

Abstract

Nowadays WiFi based human activity recognition (WiFi-HAR) has gained much attraction in an indoor environment due to its various benefits, including privacy and security, device free sensing, and cost-effectiveness. Recognition of human-human interactions (HHIs) using channel state information (CSI) signals is still challenging. Although some deep learning (DL) based architectures have been proposed in this regard, most of them suffer from limited recognition accuracy and are unable to support low computation resource devices due to having a large number of model parameters. To address these issues, we propose a dynamic method using a lightweight DL model (HHI-AttentionNet) to automatically recognize HHIs, which significantly reduces the parameters with increased recognition accuracy. In addition, we present an Antenna-Frame-Subcarrier Attention Mechanism (AFSAM) in our model that enhances the representational capability to recognize HHIs correctly. As a result, the HHI-AttentionNet model focuses on the most significant features, ignoring the irrelevant features, and reduces the impact of the complexity on the CSI signal. We evaluated the performance of the proposed HHI-AttentionNet model on a publicly available CSI-based HHI dataset collected from 40 individual pairs of subjects who performed 13 different HHIs. Its performance is also compared with other existing methods. These proved that the HHI-AttentionNet is the best model providing an average accuracy, F1 score, Cohen's Kappa, and Matthews correlation coefficient of 95.47%, 95.45%, 0.951%, and 0.950%, respectively, for recognition of 13 HHIs. It outperforms the best existing model's accuracy by more than 4%.

摘要

如今,由于其诸多优势,包括隐私和安全、无设备感应以及具有成本效益,基于 WiFi 的人体活动识别(WiFi-HAR)在室内环境中受到了广泛关注。使用信道状态信息(CSI)信号识别人际交互(HHI)仍然具有挑战性。尽管在这方面已经提出了一些基于深度学习(DL)的架构,但由于模型参数数量众多,大多数架构的识别精度有限,无法支持低计算资源设备。为了解决这些问题,我们提出了一种使用轻量级深度学习模型(HHI-AttentionNet)的动态方法来自动识别 HHI,该方法大大减少了参数数量,同时提高了识别精度。此外,我们在模型中提出了一种天线-帧-子载波注意力机制(AFSAM),以增强正确识别 HHI 的表示能力。因此,HHI-AttentionNet 模型专注于最重要的特征,忽略不相关的特征,并减少 CSI 信号复杂性的影响。我们在一个从 40 对个体进行 13 种不同 HHI 动作的公开可用基于 CSI 的 HHI 数据集上评估了所提出的 HHI-AttentionNet 模型的性能,并将其性能与其他现有方法进行了比较。结果表明,HHI-AttentionNet 是最佳模型,提供了 13 种 HHI 识别的平均准确率、F1 分数、科恩氏 κ系数和马修斯相关系数分别为 95.47%、95.45%、0.951%和 0.950%。它的准确率比最佳现有模型高出 4%以上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b10e/9414797/18dd6859509b/sensors-22-06018-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验