Suppr超能文献

Wi-SL:使用信道状态信息进行非接触式精细手势识别。

Wi-SL: Contactless Fine-Grained Gesture Recognition Uses Channel State Information.

机构信息

College of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China.

School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.

出版信息

Sensors (Basel). 2020 Jul 20;20(14):4025. doi: 10.3390/s20144025.

Abstract

In recent years, with the development of wireless sensing technology and the widespread popularity of WiFi devices, human perception based on WiFi has become possible, and gesture recognition has become an active topic in the field of human-computer interaction. As a kind of gesture, sign language is widely used in life. The establishment of an effective sign language recognition system can help people with aphasia and hearing impairment to better interact with the computer and facilitate their daily life. For this reason, this paper proposes a contactless fine-grained gesture recognition method using Channel State Information (CSI), namely Wi-SL. This method uses a commercial WiFi device to establish the correlation mapping between the amplitude and phase difference information of the subcarrier level in the wireless signal and the sign language action, without requiring the user to wear any device. We combine an efficient denoising method to filter environmental interference with an effective selection of optimal subcarriers to reduce the computational cost of the system. We also use K-means combined with a Bagging algorithm to optimize the Support Vector Machine (SVM) classification (KSB) model to enhance the classification of sign language action data. We implemented the algorithms and evaluated them for three different scenarios. The experimental results show that the average accuracy of Wi-SL gesture recognition can reach 95.8%, which realizes device-free, non-invasive, high-precision sign language gesture recognition.

摘要

近年来,随着无线传感技术的发展和 WiFi 设备的广泛普及,基于 WiFi 的人类感知成为可能,手势识别也成为人机交互领域的一个活跃课题。作为一种手势,手语在生活中被广泛使用。建立有效的手语识别系统可以帮助失语症和听力障碍者更好地与计算机交互,方便他们的日常生活。为此,本文提出了一种使用信道状态信息(CSI)的非接触式细粒度手势识别方法,即 Wi-SL。该方法使用商用 WiFi 设备建立无线信号子载波级幅度和相位差信息与手语动作之间的相关映射,无需用户佩戴任何设备。我们结合了一种有效的去噪方法来过滤环境干扰,并有效地选择最优的子载波,以降低系统的计算成本。我们还使用 K-means 结合 Bagging 算法来优化支持向量机(SVM)分类(KSB)模型,以增强手语动作数据的分类。我们实现了这些算法并在三个不同的场景下进行了评估。实验结果表明,Wi-SL 手势识别的平均准确率可达 95.8%,实现了免设备、非侵入式、高精度的手语手势识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4372/7412096/3f54c5bb1e7a/sensors-20-04025-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验