Suppr超能文献

利用深度 Q 网络为空气质量跟踪提供无人机动力。

Powering UAV with Deep Q-Network for Air Quality Tracking.

机构信息

School of Computing, Gachon University, Seongnam 13120, Korea.

European IT Solutions Institute, Dhaka 1216, Bangladesh.

出版信息

Sensors (Basel). 2022 Aug 16;22(16):6118. doi: 10.3390/s22166118.

Abstract

Tracking the source of air pollution plumes and monitoring the air quality during emergency events in real-time is crucial to support decision-makers in making an appropriate evacuation plan. Internet of Things (IoT) based air quality tracking and monitoring platforms have used stationary sensors around the environment. However, fixed IoT sensors may not be enough to monitor the air quality in a vast area during emergency situations. Therefore, many applications consider utilizing Unmanned Aerial Vehicles (UAVs) to monitor the air pollution plumes environment. However, finding an unhealthy location in a vast area requires a long navigation time. For time efficiency, we employ deep reinforcement learning (Deep RL) to assist UAVs to find air pollution plumes in an equal-sized grid space. The proposed Deep Q-network (DQN) based UAV Pollution Tracking (DUPT) is utilized to guide the multi-navigation direction of the UAV to find the pollution plumes' location in a vast area within a short duration of time. Indeed, we deployed a long short-term memory (LSTM) combined with Q-network to suggest a particular navigation pattern producing minimal time consumption. The proposed DUPT is evaluated and validated using an air pollution environment generated by a well-known Gaussian distribution and kriging interpolation. The evaluation and comparison results are carefully presented and analyzed. The experiment results show that our proposed DUPT solution can rapidly identify the unhealthy polluted area and spends around 28% of the total time of the existing solution.

摘要

追踪空气污染羽流的来源并实时监测紧急事件中的空气质量对于支持决策者制定适当的疏散计划至关重要。基于物联网 (IoT) 的空气质量跟踪和监测平台已经使用了环境周围的固定传感器。然而,在紧急情况下,固定的 IoT 传感器可能不足以监测广大区域的空气质量。因此,许多应用程序考虑利用无人机 (UAV) 来监测空气污染羽流环境。然而,在广大区域中找到不健康的位置需要很长的导航时间。为了提高效率,我们利用深度强化学习 (Deep RL) 来帮助无人机在等大小的网格空间中找到空气污染羽流。所提出的基于深度 Q 网络 (DQN) 的无人机污染跟踪 (DUPT) 用于指导无人机的多导航方向,以便在短时间内找到广大区域中的污染羽流位置。实际上,我们部署了一个长短期记忆 (LSTM) 与 Q 网络相结合,以建议一种产生最小时间消耗的特定导航模式。使用著名的高斯分布和克里金插值生成的空气污染环境对所提出的 DUPT 进行了评估和验证。仔细呈现和分析了评估和比较结果。实验结果表明,我们提出的 DUPT 解决方案可以快速识别不健康的污染区域,并且大约花费现有解决方案总时间的 28%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5809/9414400/19c1182486c3/sensors-22-06118-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验