Suppr超能文献

一种用于实时故障检测和诊断的自动化机器学习方法。

An Automated Machine Learning Approach for Real-Time Fault Detection and Diagnosis.

机构信息

Mekatronik I.C. Automacao Ltda, R. Itapeva, 43a-Imbiribeira, Recife 51180-320, Brazil.

Institute of Technological Innovation, University of Pernambuco, R. Benfica, 455-Madalena, Recife 50670-90, Brazil.

出版信息

Sensors (Basel). 2022 Aug 17;22(16):6138. doi: 10.3390/s22166138.

Abstract

This work presents a novel Automated Machine Learning (AutoML) approach for Real-Time Fault Detection and Diagnosis (RT-FDD). The approach's particular characteristics are: it uses only data that are commonly available in industrial automation systems; it automates all ML processes without human intervention; a non-ML expert can deploy it; and it considers the behavior of cyclic sequential machines, combining discrete timed events and continuous variables as features. The capacity for fault detection is analyzed in two case studies, using data from a 3D machine simulation system with faulty and non-faulty conditions. The enhancement of the RT-FDD performance when the proposed approach is applied is proved with the Feature Importance, Confusion Matrix, and F1 Score analysis, reaching mean values of 85% and 100% in each case study. Finally, considering that faults are rare events, the sensitivity of the models to the number of faulty samples is analyzed.

摘要

本工作提出了一种新颖的实时故障检测与诊断(RT-FDD)的自动化机器学习(AutoML)方法。该方法的特点是:仅使用工业自动化系统中常见的数据;无需人工干预即可自动执行所有 ML 流程;非 ML 专家也可进行部署;并考虑循环顺序机器的行为,将离散时间事件和连续变量作为特征进行组合。通过使用带有故障和非故障条件的 3D 机器仿真系统的数据,在两个案例研究中分析了故障检测能力。通过特征重要性、混淆矩阵和 F1 分数分析证明了所提出方法应用于 RT-FDD 性能的增强,在每个案例研究中均达到 85%和 100%的平均值。最后,考虑到故障是罕见事件,分析了模型对故障样本数量的敏感性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f057/9413480/309338c94bb5/sensors-22-06138-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验