文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于新型玻璃盒的可解释增强机在输配电系统故障检测中的应用。

Novel glassbox based explainable boosting machine for fault detection in electrical power transmission system.

机构信息

Department of Electrical and Biomedical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.

Department of Software Engineering, University Of Lahore, Lahore, Pakistan.

出版信息

PLoS One. 2024 Aug 28;19(8):e0309459. doi: 10.1371/journal.pone.0309459. eCollection 2024.


DOI:10.1371/journal.pone.0309459
PMID:39196913
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11355548/
Abstract

The reliable operation of electrical power transmission systems is crucial for ensuring consumer's stable and uninterrupted electricity supply. Faults in electrical power transmission systems can lead to significant disruptions, economic losses, and potential safety hazards. A protective approach is essential for transmission lines to guard against faults caused by natural disturbances, short circuits, and open circuit issues. This study employs an advanced artificial neural network methodology for fault detection and classification, specifically distinguishing between single-phase fault and fault between all three phases and three-phase symmetrical fault. For fault data creation and analysis, we utilized a collection of line currents and voltages for different fault conditions, modelled in the MATLAB environment. Different fault scenarios with varied parameters are simulated to assess the applied method's detection ability. We analyzed the signal data time series analysis based on phase line current and phase line voltage. We employed SMOTE-based data oversampling to balance the dataset. Subsequently, we developed four advanced machine-learning models and one deep-learning model using signal data from line currents and voltage faults. We have proposed an optimized novel glassbox Explainable Boosting (EB) approach for fault detection. The proposed EB method incorporates the strengths of boosting and interpretable tree models. Simulation results affirm the high-efficiency scores of 99% in detecting and categorizing faults on transmission lines compared to traditional fault detection state-of-the-art methods. We conducted hyperparameter optimization and k-fold validations to enhance fault detection performance and validate our approach. We evaluated the computational complexity of fault detection models and augmented it with eXplainable Artificial Intelligence (XAI) analysis to illuminate the decision-making process of the proposed model for fault detection. Our proposed research presents a scalable and adaptable method for advancing smart grid technology, paving the way for more secure and efficient electrical power transmission systems.

摘要

电力传输系统的可靠运行对于确保消费者稳定、不间断的电力供应至关重要。电力传输系统中的故障会导致严重的中断、经济损失和潜在的安全隐患。因此,对于传输线路来说,采取一种保护措施来防范由自然干扰、短路和开路问题引起的故障是非常必要的。本研究采用先进的人工神经网络方法进行故障检测和分类,特别是区分单相故障、三相间故障和三相对称故障。为了进行故障数据的创建和分析,我们使用了不同故障条件下的线路电流和电压的集合,这些数据是在 MATLAB 环境中建模的。通过模拟不同参数的不同故障场景来评估所应用方法的检测能力。我们对基于相线路电流和相线路电压的信号数据时间序列进行了分析。我们采用了基于 SMOTE 的数据过采样来平衡数据集。随后,我们使用信号数据来自线路电流和电压故障,开发了四个先进的机器学习模型和一个深度学习模型。我们提出了一种优化的新颖玻璃盒可解释增强(EB)方法用于故障检测。所提出的 EB 方法结合了增强和可解释树模型的优势。仿真结果证实,与传统的故障检测最先进的方法相比,该方法在检测和分类传输线上的故障方面的高效得分达到了 99%。我们进行了超参数优化和 k 折验证,以提高故障检测性能并验证我们的方法。我们评估了故障检测模型的计算复杂度,并通过可解释人工智能(XAI)分析来增强它,以说明所提出的模型进行故障检测的决策过程。我们提出的研究提出了一种可扩展和适应性强的方法,用于推进智能电网技术,为更安全、高效的电力传输系统铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c6/11355548/699c4849920b/pone.0309459.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c6/11355548/c450ad705e98/pone.0309459.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c6/11355548/14ce6b9569c0/pone.0309459.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c6/11355548/0177b1b535d9/pone.0309459.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c6/11355548/05aa0689d0ac/pone.0309459.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c6/11355548/80346e781b88/pone.0309459.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c6/11355548/2a8f748b1881/pone.0309459.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c6/11355548/92321bfd2c47/pone.0309459.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c6/11355548/e3fe4259a81a/pone.0309459.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c6/11355548/275b65b29baf/pone.0309459.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c6/11355548/14be8301df1b/pone.0309459.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c6/11355548/3a4bc4aa8858/pone.0309459.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c6/11355548/699c4849920b/pone.0309459.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c6/11355548/c450ad705e98/pone.0309459.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c6/11355548/14ce6b9569c0/pone.0309459.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c6/11355548/0177b1b535d9/pone.0309459.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c6/11355548/05aa0689d0ac/pone.0309459.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c6/11355548/80346e781b88/pone.0309459.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c6/11355548/2a8f748b1881/pone.0309459.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c6/11355548/92321bfd2c47/pone.0309459.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c6/11355548/e3fe4259a81a/pone.0309459.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c6/11355548/275b65b29baf/pone.0309459.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c6/11355548/14be8301df1b/pone.0309459.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c6/11355548/3a4bc4aa8858/pone.0309459.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9c6/11355548/699c4849920b/pone.0309459.g012.jpg

相似文献

[1]
Novel glassbox based explainable boosting machine for fault detection in electrical power transmission system.

PLoS One. 2024

[2]
2D-convolutional neural network based fault detection and classification of transmission lines using scalogram images.

Heliyon. 2024-10-4

[3]
Ensemble learning based transmission line fault classification using phasor measurement unit (PMU) data with explainable AI (XAI).

PLoS One. 2024

[4]
Fault detection and classification in electrical power transmission system using artificial neural network.

Springerplus. 2015-7-9

[5]
Efficient Methodology for Detection and Classification of Short-Circuit Faults in Distribution Systems with Distributed Generation.

Sensors (Basel). 2022-12-2

[6]
A THD-Based Fault Protection Method Using MSOGI-FLL Grid Voltage Estimator.

Sensors (Basel). 2023-1-14

[7]
FDI based on Artificial Neural Network for Low-Voltage-Ride-Through in DFIG-based Wind Turbine.

ISA Trans. 2016-9

[8]
Random Forest Regressor-Based Approach for Detecting Fault Location and Duration in Power Systems.

Sensors (Basel). 2022-1-8

[9]
The use of artificial neural network for low latency of fault detection and localisation in transmission line.

Heliyon. 2023-2-2

[10]
Simulative and experimental investigation on stator winding turn and unbalanced supply voltage fault diagnosis in induction motors using Artificial Neural Networks.

ISA Trans. 2015-11

引用本文的文献

[1]
Improving thyroid disorder diagnosis via innovative stacking ensemble learning model.

Digit Health. 2025-6-6

[2]
Incorporating soil information with machine learning for crop recommendation to improve agricultural output.

Sci Rep. 2025-3-12

[3]
Citrus diseases detection using innovative deep learning approach and Hybrid Meta-Heuristic.

PLoS One. 2025-1-22

[4]
An innovative artificial neural network model for smart crop prediction using sensory network based soil data.

PeerJ Comput Sci. 2024-11-29

本文引用的文献

[1]
A Classification Method of Point Clouds of Transmission Line Corridor Based on Improved Random Forest and Multi-Scale Features.

Sensors (Basel). 2023-1-24

[2]
Optimally detecting and classifying the transmission line fault in power system using hybrid technique.

ISA Trans. 2022-11

[3]
Fault detection and classification in electrical power transmission system using artificial neural network.

Springerplus. 2015-7-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索