Lu Xiaolong, Tian Guiyun, Wang Zongwen, Li Wentao, Yang Dehua, Li Haoran, Wang You, Ni Jijun, Zhang Yong
School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
Sensors (Basel). 2022 Aug 19;22(16):6234. doi: 10.3390/s22166234.
An edge displacement sensor is one of the key technologies for building large segmented mirror astronomical optical telescopes. A digital interface is one novel approach for sensor technologies, digital transformation and the Internet of Things (IoT) in particular. Frequency output sensors and inductance-to-digital converter (LDC) demonstrated significant advantages in comparison with conventional sensors with analog-to-digital converter (ADC) interfaces. In order for the differential inductive frequency output displacement (DIFOD) sensor to meet the high-stability requirements of segmented mirror astronomical telescopes, it is important to understand the factors for time drift of the sensor. This paper focuses on the investigation of key factors of sensor structure and material, signal conditioning and interface, and fixtures for time drift to permanently installed applications. First, the measurement principle and probe structural characteristics of the sensor are analyzed. Then, two kinds of signal conditioning and digitalization methods using resonance circuits and LDC chips are implemented and compared. Finally, the time drift stability experiments are performed on the sensors with different signal conditioning methods and fixtures under controlled temperature. Experimental results show that the magnetic shield ring effectively improves the sensitivity and quality factor of the sensors, the time drift stability of the sensor using the signal conditioning based on resonance circuits is better than that of the sensors using LDC chips, and the root mean square (RMS) of the sensor time drift meets the requirement of 0.01 μm/24 h. This study will help further development of high-stability of frequency output sensors and IoT-based systems for scaled-up applications in the future.
边缘位移传感器是建造大型分段镜天文光学望远镜的关键技术之一。数字接口是传感器技术,特别是数字转型和物联网(IoT)的一种新颖方法。与具有模数转换器(ADC)接口的传统传感器相比,频率输出传感器和电感数字转换器(LDC)显示出显著优势。为了使差分感应频率输出位移(DIFOD)传感器满足分段镜天文望远镜的高稳定性要求,了解传感器时间漂移的因素很重要。本文重点研究传感器结构和材料、信号调理与接口以及用于永久安装应用的时间漂移固定装置的关键因素。首先,分析了传感器的测量原理和探头结构特性。然后,实现并比较了使用谐振电路和LDC芯片的两种信号调理和数字化方法。最后,在受控温度下对采用不同信号调理方法和固定装置的传感器进行了时间漂移稳定性实验。实验结果表明,磁屏蔽环有效地提高了传感器的灵敏度和品质因数,基于谐振电路的信号调理的传感器的时间漂移稳定性优于使用LDC芯片的传感器,传感器时间漂移的均方根(RMS)满足0.01μm/24h的要求。这项研究将有助于未来进一步开发高稳定性的频率输出传感器和基于物联网的系统,以实现规模化应用。