Suppr超能文献

利用深度学习在磁共振成像上自动检测膝关节囊性病变

Automated detection of knee cystic lesions on magnetic resonance imaging using deep learning.

作者信息

Xiongfeng Tang, Yingzhi Li, Xianyue Shen, Meng He, Bo Chen, Deming Guo, Yanguo Qin

机构信息

Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, China.

出版信息

Front Med (Lausanne). 2022 Aug 9;9:928642. doi: 10.3389/fmed.2022.928642. eCollection 2022.

Abstract

BACKGROUND

Cystic lesions are frequently observed in knee joint diseases and are usually associated with joint pain, degenerative disorders, or acute injury. Magnetic resonance imaging-based, artificial intelligence-assisted cyst detection is an effective method to improve the whole knee joint analysis. However, few studies have investigated this method. This study is the first attempt at auto-detection of knee cysts based on deep learning methods.

METHODS

This retrospective study collected data from 282 subjects with knee cysts confirmed at our institution from January to October 2021. A Squeeze-and-Excitation (SE) inception attention-based You only look once version 5 (SE-YOLOv5) model was developed based on a self-attention mechanism for knee cyst-like lesion detection and differentiation from knee effusions, both characterized by high T2-weighted signals in magnetic resonance imaging (MRI) scans. Model performance was evaluated metrics including accuracy, precision, recall, mean average precision (mAP), F1 score, and frames per second (fps).

RESULTS

The deep learning model could accurately identify knee MRI scans and auto-detect both obvious cyst lesions and small ones with inconspicuous contrasts. The SE-YOLO V5 model constructed in this study yielded superior performance (F1 = 0.879, precision = 0.887, recall = 0.872, all class mAP0.5 = 0.944, effusion mAP = 0.945, cyst mAP = 0.942) and improved detection speed compared to a traditional YOLO model.

CONCLUSION

This proof-of-concept study examined whether deep learning models could detect knee cysts and distinguish them from knee effusions. The results demonstrated that the classical Yolo V5 and proposed SE-Yolo V5 models could accurately identify cysts.

摘要

背景

囊性病变在膝关节疾病中经常被观察到,通常与关节疼痛、退行性疾病或急性损伤有关。基于磁共振成像的人工智能辅助囊肿检测是改善全膝关节分析的有效方法。然而,很少有研究调查这种方法。本研究是首次尝试基于深度学习方法自动检测膝关节囊肿。

方法

这项回顾性研究收集了2021年1月至10月在本机构确诊为膝关节囊肿的282名受试者的数据。基于自注意力机制开发了一种基于挤压与激励(SE) inception注意力的你只看一次版本5(SE-YOLOv5)模型,用于检测膝关节囊肿样病变并将其与膝关节积液区分开来,二者在磁共振成像(MRI)扫描中均表现为高T2加权信号。通过包括准确率、精确率、召回率、平均精度均值(mAP)、F1分数和每秒帧数(fps)等指标评估模型性能。

结果

深度学习模型能够准确识别膝关节MRI扫描,并自动检测出对比度不明显的明显囊肿病变和小囊肿。本研究构建的SE-YOLO V5模型表现优异(F1 = 0.879,精确率 = 0.887,召回率 = 0.872,所有类别mAP0.5 = 0.944,积液mAP = 0.945,囊肿mAP = 0.942),与传统YOLO模型相比,检测速度有所提高。

结论

这项概念验证研究检验了深度学习模型是否能够检测膝关节囊肿并将其与膝关节积液区分开来。结果表明,经典的Yolo V5模型和提出的SE-Yolo V5模型能够准确识别囊肿。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e06/9397605/11600bd52895/fmed-09-928642-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验