Bosco Stefano, Scarlino Pasquale, Klinovaja Jelena, Loss Daniel
Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland.
Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
Phys Rev Lett. 2022 Aug 5;129(6):066801. doi: 10.1103/PhysRevLett.129.066801.
Spin qubits in silicon and germanium quantum dots are promising platforms for quantum computing, but entangling spin qubits over micrometer distances remains a critical challenge. Current prototypical architectures maximize transversal interactions between qubits and microwave resonators, where the spin state is flipped by nearly resonant photons. However, these interactions cause backaction on the qubit that yields unavoidable residual qubit-qubit couplings and significantly affects the gate fidelity. Strikingly, residual couplings vanish when spin-photon interactions are longitudinal and photons couple to the phase of the qubit. We show that large and tunable spin-photon interactions emerge naturally in state-of-the-art hole spin qubits and that they change from transversal to longitudinal depending on the magnetic field direction. We propose ways to electrically control and measure these interactions, as well as realistic protocols to implement fast high-fidelity two-qubit entangling gates. These protocols work also at high temperatures, paving the way toward the implementation of large-scale quantum processors.
硅和锗量子点中的自旋量子比特是量子计算很有前景的平台,但在微米距离上纠缠自旋量子比特仍然是一个关键挑战。当前的原型架构最大化了量子比特与微波谐振器之间的横向相互作用,其中自旋状态由近共振光子翻转。然而,这些相互作用会对量子比特产生反作用,从而产生不可避免的残余量子比特 - 量子比特耦合,并显著影响门保真度。引人注目的是,当自旋 - 光子相互作用是纵向的且光子耦合到量子比特的相位时,残余耦合消失。我们表明,在最先进的空穴自旋量子比特中自然会出现大的且可调谐的自旋 - 光子相互作用,并且它们会根据磁场方向从横向变为纵向。我们提出了电控制和测量这些相互作用的方法,以及实现快速高保真双量子比特纠缠门的实际协议。这些协议在高温下也能工作,为大规模量子处理器的实现铺平了道路。