Carballido Miguel J, Svab Simon, Eggli Rafael S, Patlatiuk Taras, Chevalier Kwon Pierre, Schuff Jonas, Kaiser Rahel M, Camenzind Leon C, Li Ang, Ares Natalia, Bakkers Erik P A M, Bosco Stefano, Egues J Carlos, Loss Daniel, Zumbühl Dominik M
Department of Physics, University of Basel, Klingelbergstrasse 82, Basel, Switzerland.
Department of Materials, University of Oxford, Oxford, UK.
Nat Commun. 2025 Aug 15;16(1):7616. doi: 10.1038/s41467-025-62614-z.
Across leading qubit platforms, a common trade-off persists: increasing coherence comes at the cost of operational speed, reflecting the notion that protecting a qubit from its noisy surroundings also limits control over it. This speed-coherence dilemma limits qubit performance across various technologies. Here, we demonstrate a hole spin qubit in a Ge/Si core/shell nanowire that triples its Rabi frequency while simultaneously quadrupling its Hahn-echo coherence time, boosting the Q-factor by over an order of magnitude. This is enabled by the direct Rashba spin-orbit interaction, emerging from heavy-hole-light-hole mixing through strong confinement in two dimensions. Tuning a gate voltage causes this interaction to peak, providing maximum drive speed and a point where the qubit is optimally protected from charge noise, allowing speed and coherence to scale together. Our proof-of-concept shows that careful dot design can overcome a long-standing limitation, offering a new approach towards building high-performance, fault-tolerant qubits.
在领先的量子比特平台中,一个常见的权衡仍然存在:提高相干性是以牺牲操作速度为代价的,这反映了这样一种观念,即保护量子比特免受其嘈杂环境的影响也会限制对它进行控制。这种速度 - 相干性困境限制了各种技术中量子比特的性能。在此,我们展示了一种位于Ge/Si核壳纳米线中的空穴自旋量子比特,其拉比频率提高了两倍,同时哈恩回波相干时间增加了三倍,品质因数提高了一个多数量级。这是由直接的 Rashba 自旋 - 轨道相互作用实现的,这种相互作用源于通过二维强限制实现的重空穴 - 轻空穴混合。调节栅极电压会使这种相互作用达到峰值,从而提供最大驱动速度,并使量子比特在该点受到最佳电荷噪声保护,使速度和相干性能够共同提升。我们的概念验证表明,精心设计量子点可以克服一个长期存在的限制,并为构建高性能、容错量子比特提供一种新方法。