Science and Technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
Adv Sci (Weinh). 2022 Oct;9(30):e2204086. doi: 10.1002/advs.202204086. Epub 2022 Aug 26.
Solar-thermal conversion is considered as a green and simple means to improve the performance of energy storage materials, but often limited by the intrinsic photothermal properties of materials and crude structure design. Herein, inspired by the unique light trapping effect of wide leaf spiral grass during photosynthesis, a biomimetic structural photothermal energy storage system is developed, to further promote the solar thermal-driven pseudo capacitance improvement. In this system, three-dimensional printed tortional Kelvin cell arrays structure with interesting light trapping property functions as "spiral leaf blades" to improve the efficiency of light absorption, while graphene quantum dots/MXene nanohybrids with wide photothermal response range and strong electrochemical activity serve as "chloroplast" for photothermal conversion and energy storage. As expected, the biomimetic structure-enhanced photothermal supercapacitor achieves an ideal solar thermal-driven pseudo capacitance enhancement (up to 304%), an ultrahigh areal capacitance of 10.47 F cm , remarkable photothermal response (surface temperature change of 50.1 °C), excellent energy density (1.18 mWh cm ) and cycling stability (10000 cycles). This work not only offers a novel enhancement strategy for photothermal applications, but also inspires new structure designs for multifunctional energy storage and conversion devices.
太阳能-热能转换被认为是提高储能材料性能的一种绿色、简单的方法,但通常受到材料固有光热性能和粗糙结构设计的限制。在此,受光合作用过程中宽叶螺旋草独特的光捕获效应的启发,开发了一种仿生结构的光热储能系统,以进一步促进太阳能驱动的赝电容的提高。在该系统中,具有有趣的光捕获特性的三维打印扭曲开尔文电池阵列结构充当“螺旋叶片”,以提高光吸收效率,而具有宽光热响应范围和强电化学活性的石墨烯量子点/MXene 纳米杂化物则充当光热转换和储能的“叶绿体”。不出所料,仿生结构增强的光热超级电容器实现了理想的太阳能驱动的赝电容增强(高达 304%),超高的面电容为 10.47 F cm ,显著的光热响应(表面温度变化 50.1°C),优异的能量密度(1.18 mWh cm )和循环稳定性(10000 次循环)。这项工作不仅为光热应用提供了一种新的增强策略,也为多功能储能和转换器件的新结构设计提供了灵感。