Suppr超能文献

双输入突触的神经信息处理和计算。

Neural Information Processing and Computations of Two-Input Synapses.

机构信息

Laboratory of Computational Neurophysics, Convergence Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea

School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, South Korea

出版信息

Neural Comput. 2022 Sep 12;34(10):2102-2131. doi: 10.1162/neco_a_01534.

Abstract

Information processing in artificial neural networks is largely dependent on the nature of neuron models. While commonly used models are designed for linear integration of synaptic inputs, accumulating experimental evidence suggests that biological neurons are capable of nonlinear computations for many converging synaptic inputs via homo- and heterosynaptic mechanisms. This nonlinear neuronal computation may play an important role in complex information processing at the neural circuit level. Here we characterize the dynamics and coding properties of neuron models on synaptic transmissions delivered from two hidden states. The neuronal information processing is influenced by the cooperative and competitive interactions among synapses and the coherence of the hidden states. Furthermore, we demonstrate that neuronal information processing under two-input synaptic transmission can be mapped to linearly nonseparable XOR as well as basic AND/OR operations. In particular, the mixtures of linear and nonlinear neuron models outperform the fashion-MNIST test compared to the neural networks consisting of only one type. This study provides a computational framework for assessing information processing of neuron and synapse models that may be beneficial for the design of brain-inspired artificial intelligence algorithms and neuromorphic systems.

摘要

人工神经网络中的信息处理在很大程度上取决于神经元模型的性质。虽然常用的模型是为突触输入的线性整合而设计的,但越来越多的实验证据表明,生物神经元能够通过同型和异型突触机制对许多汇聚的突触输入进行非线性计算。这种非线性神经元计算可能在神经回路水平的复杂信息处理中发挥重要作用。在这里,我们描述了来自两个隐藏状态的突触传递中神经元模型的动力学和编码特性。突触之间的协同和竞争相互作用以及隐藏状态的相干性影响神经元信息处理。此外,我们证明了在双输入突触传递下,神经元信息处理可以映射到线性不可分的异或以及基本的与/或操作。特别是,与仅由一种类型组成的神经网络相比,混合的线性和非线性神经元模型在 Fashion-MNIST 测试中表现更好。这项研究为评估神经元和突触模型的信息处理提供了一个计算框架,这可能有助于设计基于大脑的人工智能算法和神经形态系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验