Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Center, IRCSS, Via Manzoni 56, 20089, Milan-Rozzano, Italy.
Department of Biomedical Sciences, Humanitas University, Milan-Rozzano, Italy.
Radiat Oncol. 2022 Aug 26;17(1):150. doi: 10.1186/s13014-022-02119-x.
To investigate the performance of a narrow-scope knowledge-based RapidPlan (RP) model for optimisation of intensity-modulated proton therapy (IMPT) and volumetric modulated arc therapy (VMAT) plans applied to patients with pleural mesothelioma. Second, estimate the potential benefit of IMPT versus VMAT for this class of patients.
A cohort of 82 patients was retrospectively selected; 60 were used to "train" a dose-volume histogram predictive model; the remaining 22 provided independent validation. The performance of the RP models was benchmarked, comparing predicted versus achieved mean and near-to-maximum dose for all organs at risk (OARs) in the training set and by quantitative assessment of some dose-volume metrics in the comparison of the validation RP-based data versus the manually optimised training datasets. Treatment plans were designed for a prescription dose of 44 Gy in 22 fractions (proton doses account for a fixed relative biological effectiveness RBE = 1.1).
Training and validation RP-based plans resulted dosimetrically similar for both VMAT and IMPT groups, and the clinical planning aims were met for all structures. The IMPT plans outperformed the VMAT ones for all OARs for the contra-lateral and the mean and low dose regions for the ipsilateral OARs. Concerning the prediction performance of the RP models, the linear regression for the near-to-maximum dose resulted in D = 1.03D + 0.58 and D = 1.02D + 1.46 for VMAT and IMPT, respectively. For the mean dose it resulted: D = 0.99D + 0.34 and D = 1.05D + 0.27 respectively. In both cases, the linear correlation between prediction and achievement is granted with an angular coefficient deviating from unity for less than 5%. Concerning the dosimetric comparison between manual plans in the training cohort and RP-based plans in the validation cohort, no clinical differences were observed for the target volumes in both the VMAT and IMPT groups. Similar consistency was observed for the dose-volume metrics analysed for the OAR. This proves the possibility of achieving the same quality of plans with manual procedures (the training set) or with automated RP-based methods (the validation set).
Two models were trained and validated for VMAT and IMPT plans for pleural mesothelioma. The RP model performance resulted satisfactory as measured by the agreement between predicted and achieved (after full optimisation) dose-volume metrics. The IMPT plans outperformed the VMAT plans for all the OARs (with different intensities for contra- or ipsilateral structures). RP-based planning enabled the automation of part of the optimisation and the harmonisation of the dose-volume results between training and validation. The IMPT data showed a systematic significant dosimetric advantage over VMAT. In general, using an RP-based approach can simplify the optimisation workflow in these complex treatment indications without impacting the quality of plans.
为了研究窄范围基于知识的 RapidPlan(RP)模型在优化胸膜间皮瘤患者调强质子治疗(IMPT)和容积旋转调强弧形治疗(VMAT)计划中的性能。其次,估计对于这类患者,IMPT 相对于 VMAT 的潜在益处。
回顾性选择了 82 例患者;60 例用于“训练”剂量-体积直方图预测模型;其余 22 例用于独立验证。在训练集中比较了 RP 模型的性能,比较了所有危及器官(OAR)的预测和实现的平均剂量和接近最大剂量,并通过比较验证的基于 RP 的数据与手动优化的训练数据集的一些剂量-体积指标的定量评估来评估。处方剂量为 44 Gy,22 个分次(质子剂量的固定相对生物效应 RBE=1.1)。
基于 RP 的培训和验证计划在 VMAT 和 IMPT 组中在剂量学上相似,并且所有结构都达到了临床计划目标。对于对侧和同侧 OAR 的平均和低剂量区域,IMPT 计划优于 VMAT 计划。关于 RP 模型的预测性能,对于 VMAT 和 IMPT,近最大剂量的线性回归分别为 D=1.03D+0.58 和 D=1.02D+1.46。对于平均剂量,结果为:D=0.99D+0.34 和 D=1.05D+0.27。在这两种情况下,预测和实现之间的线性相关性都得到了保证,角度系数偏离单位值不到 5%。在培训队列中的手动计划和验证队列中的基于 RP 的计划之间的剂量学比较中,VMAT 和 IMPT 组的靶体积均未观察到临床差异。对于分析的 OAR 的剂量-体积指标也观察到了类似的一致性。这证明了使用手动程序(培训集)或自动化基于 RP 的方法(验证集)可以达到相同质量的计划。
针对胸膜间皮瘤,我们对 VMAT 和 IMPT 计划进行了两个模型的训练和验证。RP 模型的性能通过预测和实现(经过完全优化后)剂量-体积指标之间的一致性来衡量,结果令人满意。与 VMAT 相比,IMPT 计划在所有 OAR 中表现更好(对侧或同侧结构的强度不同)。基于 RP 的规划能够实现优化的部分自动化,并在培训和验证之间实现剂量-体积结果的协调。IMPT 数据显示出与 VMAT 相比具有系统的显著剂量优势。总的来说,在这些复杂的治疗适应症中,使用基于 RP 的方法可以简化优化工作流程,而不会影响计划的质量。