Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, 35015, Republic of Korea.
Fluids Barriers CNS. 2022 Aug 26;19(1):64. doi: 10.1186/s12987-022-00363-7.
Endothelial cells (ECs) in cerebral vessels are considered the primary targets in acute hemorrhagic brain injuries. EC dysfunction can aggravate neuronal injuries by causing secondary inflammatory responses and blood-brain barrier (BBB) disruption. Previous studies have reported that enhancement of mitochondrial function within ECs may reduce BBB disruption and decrease the severity of acute brain injuries. However, the molecular signaling pathways through which enhanced EC mitochondrial function is enhanced to exert this BBB protective effect have not been fully elucidated.
To identify signaling pathways involved in linking EC-specific mitochondrial dysfunction and BBB disruption, we first performed RNA sequencing using isolated cerebral vessels from TEKCRIF1 KO mice, a mouse strain that displays EC-specific mitochondrial dysfunction. After identification, we assessed the significance of candidate signaling pathways using an intracerebral hemorrhage (ICH) mouse model. BBB integrity was assessed using an IgG leakage assay, and symptomatic changes were evaluated using behavioral assays.
Transcriptome analyses of the TEKCRIF1 KO mouse revealed significant changes in Notch1 signaling, a pathway intimately involved in BBB maintenance. We also observed a decrease in Notch1 signaling and expression of the mitochondrial oxidative phosphorylation (OxPhos) complex in the ICH mouse model, which also exhibits BBB disruption. To further assess the function of Notch1 signaling in relation to BBB disruption, we injected ICH model mice with adropin, a protein that interacts with the Notch1 ligand NB-3 and activates Notch1 signaling. We found that adropin prevented BBB disruption and reduced the extent (area) of the injury compared with that in vehicle controls, in association with alteration of mitochondrial function.
These results suggest that the Notch1 signaling pathway acts as an upstream regulator of DEGs and can be a target to regulate the changes involved with endothelial mitochondrial dysfunction-dependent BBB disruption. Thus, treatment methods that activate Notch1 may be beneficial in acute brain injuries by protecting BBB integrity.
脑血管内皮细胞(ECs)被认为是急性出血性脑损伤的主要靶标。EC 功能障碍可通过引起继发性炎症反应和血脑屏障(BBB)破坏而加重神经元损伤。先前的研究报道,增强 EC 中的线粒体功能可能会减少 BBB 破坏并降低急性脑损伤的严重程度。然而,增强 EC 线粒体功能以发挥这种 BBB 保护作用的分子信号通路尚未完全阐明。
为了确定将 EC 特异性线粒体功能障碍与 BBB 破坏联系起来的信号通路,我们首先使用从 TEKCRIF1 KO 小鼠(一种显示 EC 特异性线粒体功能障碍的小鼠品系)分离的脑血管进行 RNA 测序。鉴定后,我们使用脑出血(ICH)小鼠模型评估候选信号通路的意义。使用 IgG 渗漏测定法评估 BBB 完整性,并通过行为测定评估症状变化。
TEKCRIF1 KO 小鼠的转录组分析显示 Notch1 信号通路发生显著变化,该通路与 BBB 的维持密切相关。我们还观察到 Notch1 信号通路和 ICH 小鼠模型中线粒体氧化磷酸化(OxPhos)复合物的表达减少,该模型也表现出 BBB 破坏。为了进一步评估 Notch1 信号通路与 BBB 破坏之间的关系,我们向 ICH 模型小鼠注射了 adropin,一种与 Notch1 配体 NB-3 相互作用并激活 Notch1 信号通路的蛋白质。我们发现,与载体对照组相比,adropin 可防止 BBB 破坏并减少损伤程度(面积),同时改变线粒体功能。
这些结果表明,Notch1 信号通路作为 DEGs 的上游调节剂,可以作为调节与内皮细胞线粒体功能障碍相关的 BBB 破坏相关变化的靶点。因此,激活 Notch1 的治疗方法可能通过保护 BBB 完整性对急性脑损伤有益。