Suppr超能文献

对全规模工业废水处理系统改造方案的经济、技术和环境评估。

Economic, technical, and environmental evaluation of retrofitting scenarios in a full-scale industrial wastewater treatment system.

机构信息

Department of Chemical and Biochemical Engineering, Process and Systems Engineering Centre (PROSYS), Technical University of Denmark, Building 228 A, Kgs. Lyngby 2800, Denmark.

Department of Environmental and Resource Engineering, Quantitative Sustainability Assessment, Technical University of Denmark, Produktionstorvet 424, Kgs. Lyngby 2800, Denmark.

出版信息

Water Res. 2022 Sep 1;223:118997. doi: 10.1016/j.watres.2022.118997. Epub 2022 Aug 18.

Abstract

The use of mathematical models is a well-established procedure in the field of (waste) water engineering to "virtually" evaluate the feasibility of novel process modifications. In this way, only options with the highest chance of success are further developed to be implemented at full-scale, while less interesting proposals can be disregarded at an early stage. Nevertheless, there is still lack of studies, where different plant-wide model predictions (effluent quality, process economics, and technical aspects) are comprehensibly verified in the field with full-scale data. In this work, a set of analysis/evaluation tools are used to assess alternative retrofitting options in the largest industrial wastewater treatment plant in Northern Europe. A mechanistic mathematical model is simulated to reproduce process behavior (deviation < 11%). Multiple criteria are defined and verified with plant data (deviation < 5%). The feasibility of three types of scenarios is tested: (1) stream refluxing, (2) change of operational conditions and (3) the implementation of new technologies. Experimental measurements and computer simulations show that the current plant´s main revenues are obtained from the electricity produced by the biogas engine (54%) and sales of the inactivated bio-solids for off-site biogas production (33%). The main expenditures are the discharge fee (39%), and transportation and handling of bio-solids (30%). Selective treatment of bio-solid streams strongly modifies the fate of COD and N compounds within the plant. In addition, it increases revenues (+3%), reduces cost (-9%) and liberates capacity in both activated sludge (+25%) and inactivation reactors (+50%). Better management of the buffer tank promotes heterotrophic denitrification instead of dissimilatory nitrate conversion to ammonia. In this way, 11% of the incoming nitrogen is removed within the anaerobic water line and does not overload the activated sludge reactors. Only a marginal increase in process performance is achieved when the anaerobic granular sludge reactor operates at full capacity. The latter reveals that influent biodegradability is the main limiting factor rather than volume. Usage of either NaOH or heat (instead of CaO) as inactivation agents allows anaerobic treatment of the reject water, which substantially benefits revenues derived from higher electricity recovery (+44%). However, there is a high toll paid on chemicals (+73%) or heat recovery (-19%) depending on the inactivation technology. In addition, partial nitration/Anammox and a better poly-aluminum chloride (PAC) dosage strategy is necessary to achieve acceptable (< 2%) N and P levels in the effluent. The scenarios are evaluated from a sustainability angle by using life cycle impact assessment (LCIA) in form of damage stressors grouped into three categories: human health, ecosystems quality, and resource scarcity. The presented decision support tool has been used by the biotech company involved in the study to support decision-making on how to handle future expansions.

摘要

在(废水)水工程领域,使用数学模型是一种成熟的方法,可以“虚拟”评估新工艺改造的可行性。通过这种方式,只有具有最高成功机会的方案才会进一步开发并在全规模实施,而不太有趣的方案则可以在早期阶段被忽略。然而,仍然缺乏研究,即在全规模数据的基础上,对不同的全厂模型预测(出水质量、工艺经济性和技术方面)进行全面验证。在这项工作中,使用了一组分析/评估工具来评估北欧最大的工业废水处理厂的替代改造方案。模拟了一个机理数学模型来重现工艺行为(偏差<11%)。定义了多个标准并使用工厂数据进行了验证(偏差<5%)。测试了三种类型的方案的可行性:(1)回流,(2)操作条件的变化,(3)新技术的实施。实验测量和计算机模拟表明,当前工厂的主要收入来自沼气发动机产生的电力(54%)和出售用于场外沼气生产的灭活生物固体(33%)。主要支出是排污费(39%)和生物固体的运输和处理(30%)。生物固体流的选择性处理强烈改变了工厂内 COD 和 N 化合物的命运。此外,它增加了收入(+3%),降低了成本(-9%),并使活性污泥(+25%)和失活反应器(+50%)中的容量得到释放。缓冲罐的更好管理促进了异养反硝化,而不是将硝酸盐异化还原为氨。通过这种方式,11%的进水氮在厌氧水线内被去除,不会使活性污泥反应器过载。当厌氧颗粒污泥反应器满负荷运行时,仅获得了微不足道的工艺性能提高。后者表明,进水的可生物降解性是主要的限制因素,而不是体积。使用 NaOH 或热(而不是 CaO)作为灭活剂可以允许对废水进行厌氧处理,这大大增加了由于更高的电力回收而获得的收入(+44%)。但是,根据灭活技术,在化学品(+73%)或热回收(-19%)方面的费用很高。此外,需要部分硝化/厌氧氨氧化和更好的聚合氯化铝(PAC)投加策略,以在出水中达到可接受的(<2%)N 和 P 水平。该方案从可持续性角度进行了评估,方法是使用生命周期影响评估(LCIA),以分为三类的损害胁迫因子的形式:人类健康、生态系统质量和资源稀缺性。参与研究的生物技术公司使用所提供的决策支持工具来支持关于如何处理未来扩张的决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验