Suppr超能文献

代谢综合征预测:一种有助于初级预防的机器学习方法。

Prediction of metabolic syndrome: A machine learning approach to help primary prevention.

机构信息

Hospital Israelita Albert Einstein, São Paulo, Brazil.

Hospital Israelita Albert Einstein, São Paulo, Brazil.

出版信息

Diabetes Res Clin Pract. 2022 Sep;191:110047. doi: 10.1016/j.diabres.2022.110047. Epub 2022 Aug 24.

Abstract

AIMS

To describe the performance of machine learning (ML) applied to predict future metabolic syndrome (MS), and to estimate lifestyle changes effects in MS predictions.

METHODS

We analyzed data from 17,182 adults attending a checkup program sequentially (37,999 visit pairs) over 17 years. Variables on sociodemographic attributes, clinical, laboratory, and lifestyle characteristics were used to develop ML models to predict MS [logistic regression, linear discriminant analysis, k-nearest neighbors, decision trees, Light Gradient Boosting Machine (LGBM), Extreme Gradient Boosting]. We have tested the effects of changes in lifestyle in MS prediction at individual levels.

RESULTS

All models showed adequate calibration and good discrimination, but the LGBM showed better performance (Sensitivity = 87.8 %, Specificity = 70.2 %, AUC-ROC = 0.86). Causal inference analysis showed that increasing physical activity level and reducing BMI by at least 2 % had an effect of reducing the predicted probability of MS by 3.8 % (95 % CI = -4.8 %; -2.7 %).

CONCLUSION

ML models based on data from a checkup program showed good performance to predict MS and allowed testing for effects of lifestyle changes in this prediction. External validation is recommended to verify models' ability to identify at-risk individuals, and potentially increase their engagement in preventive measures.

摘要

目的

描述机器学习 (ML) 在预测未来代谢综合征 (MS) 中的应用表现,并估计生活方式改变对 MS 预测的影响。

方法

我们分析了 17182 名成年人在 17 年内连续参加体检计划的数据(37999 次就诊对)。使用社会人口统计学属性、临床、实验室和生活方式特征变量来开发 ML 模型以预测 MS [逻辑回归、线性判别分析、k-最近邻、决策树、Light Gradient Boosting Machine (LGBM)、极端梯度提升]。我们测试了个体水平上生活方式改变对 MS 预测的影响。

结果

所有模型均显示出良好的校准和区分度,但 LGBM 表现出更好的性能(敏感性=87.8%,特异性=70.2%,AUC-ROC=0.86)。因果推理分析表明,增加体力活动水平和将 BMI 降低至少 2%,可使 MS 的预测概率降低 3.8%(95%CI=-4.8%;-2.7%)。

结论

基于体检计划数据的 ML 模型在预测 MS 方面表现良好,并允许测试生活方式改变对这种预测的影响。建议进行外部验证,以验证模型识别高危个体的能力,并可能增加他们对预防措施的参与度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验