Suppr超能文献

利用人体测量学和生物电阻抗参数预测儿童代谢综合征的机器学习模型的开发与验证

Development and validation of a machine learning model for predicting pediatric metabolic syndrome using anthropometric and bioelectrical impedance parameters.

作者信息

Choi Youngha, Lee Kanghyuck, Seol Eun Gyung, Kim Joon Young, Lee Eun Byoul, Chae Hyun Wook, Ko Taehoon, Song Kyungchul

机构信息

Department of Pediatrics, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.

Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

出版信息

Int J Obes (Lond). 2025 Apr 1. doi: 10.1038/s41366-025-01761-1.

Abstract

OBJECTIVE

Metabolic syndrome (MS) is a risk factor for cardiovascular diseases, and its prevalence is increasing among children and adolescents. This study developed a machine learning model to predict MS using anthropometric and bioelectrical impedance analysis (BIA) parameters, highlighting its ability to handle complex, nonlinear variable relationships more effectively than traditional methods such as logistic regression.

METHODS

The study included 359 youths from the Korea National Health and Nutrition Examination Survey (KNHANES; 16 MS, 343 normal) and 174 youths from real-world clinical data (66 MS, 108 normal). Model 1 used anthropometric data, Model 2 used BIA parameters, and Model 3 combined both. The eXtreme Gradient Boosting trained the models, and area under the receiver operating characteristic curve (AUC) evaluated performance. Shapley value analysis was applied to assess the contribution of each parameter to the model's prediction.

RESULTS

The AUCs for Models 1, 2, and 3 were 0.75, 0.66, and 0.90, respectively, in the KNHANES dataset, and 0.56, 0.61, and 0.74, respectively, in the real-world dataset. In pairwise comparison, Model 3 outperformed both Model 1 and Model 2 in both the KNHANES dataset (Model 1 vs. Model 3, p = 0.026; Model 2 vs. Model 3, p = 0.033) and the real-world dataset (Model 1 vs. Model 3, p = 0.035; Model 2 vs. Model 3, p = 0.008). Body fat mass was identified as the most significant contributor to Model 3.

CONCLUSION

The integrated model using both anthropometric and BIA parameters demonstrated strong predictability for pediatric MS, underlining its potential as an effective screening tool for MS in both clinical and general populations.

摘要

目的

代谢综合征(MS)是心血管疾病的一个危险因素,其在儿童和青少年中的患病率正在上升。本研究开发了一种机器学习模型,用于使用人体测量学和生物电阻抗分析(BIA)参数预测MS,突出了其比逻辑回归等传统方法更有效地处理复杂、非线性变量关系的能力。

方法

该研究纳入了来自韩国国家健康与营养检查调查(KNHANES)的359名青少年(16名患有MS,343名正常)和来自真实世界临床数据的174名青少年(66名患有MS,108名正常)。模型1使用人体测量数据,模型2使用BIA参数,模型3将两者结合。极端梯度提升算法对模型进行训练,受试者操作特征曲线下面积(AUC)评估性能。应用Shapley值分析来评估每个参数对模型预测的贡献。

结果

在KNHANES数据集中,模型1、2和3的AUC分别为0.75、0.66和0.90,在真实世界数据集中分别为0.56、0.61和0.74。在两两比较中,模型3在KNHANES数据集(模型1与模型3,p = 0.026;模型2与模型3,p = 0.033)和真实世界数据集(模型1与模型3,p = 0.035;模型2与模型3,p = 0.008)中均优于模型1和模型2。身体脂肪量被确定为模型3的最主要贡献因素。

结论

使用人体测量学和BIA参数的综合模型对儿童MS具有很强的预测能力,突出了其作为临床和普通人群中MS有效筛查工具的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验