Suppr超能文献

语音归一化中韵律线索的建模表示。

Modelling representations in speech normalization of prosodic cues.

机构信息

Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China.

Hong Kong Polytechnic University-Peking University Research Centre on Chinese Linguistics, Kowloon, Hong Kong SAR, China.

出版信息

Sci Rep. 2022 Aug 27;12(1):14635. doi: 10.1038/s41598-022-18838-w.

Abstract

The lack of invariance problem in speech perception refers to a fundamental problem of how listeners deal with differences of speech sounds produced by various speakers. The current study is the first to test the contributions of mentally stored distributional information in normalization of prosodic cues. This study starts out by modelling distributions of acoustic cues from a speech corpus. We proceeded to conduct three experiments using both naturally produced lexical tones with estimated distributions and manipulated lexical tones with f0 values generated from simulated distributions. State of the art statistical techniques have been used to examine the effects of distribution parameters in normalization and identification curves with respect to each parameter. Based on the significant effects of distribution parameters, we proposed a probabilistic parametric representation (PPR), integrating knowledge from previously established distributions of speakers with their indexical information. PPR is still accessed during speech perception even when contextual information is present. We also discussed the procedure of normalization of speech signals produced by unfamiliar talker with and without contexts and the access of long-term stored representations.

摘要

言语感知中的不变性问题指的是一个基本问题,即听者如何处理由不同说话者发出的语音差异。本研究首次测试了心理存储的分布信息在韵律线索归一化中的作用。本研究首先从语音语料库中构建声学线索分布模型。然后,我们使用具有估计分布的自然产生的词汇调以及具有从模拟分布生成的 f0 值的人为词汇调进行了三个实验。本研究使用了最先进的统计技术来检验归一化和识别曲线中分布参数对每个参数的影响。基于分布参数的显著影响,我们提出了一种概率参数表示(PPR),将来自具有其索引信息的说话者的先前建立的分布的知识进行了整合。即使存在上下文信息,PPR 也会在言语感知过程中被访问。我们还讨论了在有和没有上下文的情况下对不熟悉说话者产生的语音信号进行归一化的过程,以及对长期存储的表示的访问。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验