Suppr超能文献

将国家卫生研究院影响分层评分转化为 PEG。

Crosswalking the National Institutes of Health Impact Stratification Score to the PEG.

机构信息

UCLA Department of Medicine, Los Angeles, CA; Health Care Division, RAND Corporation, Santa Monica, CA.

Health Care Division, RAND Corporation, Santa Monica, CA.

出版信息

Arch Phys Med Rehabil. 2023 Mar;104(3):425-429. doi: 10.1016/j.apmr.2022.08.006. Epub 2022 Aug 27.

Abstract

OBJECTIVE

To crosswalk the National Institutes of Health (NIH) Pain Consortium's Research Task Force proposed Impact Stratification Score (ISS) to the PEG (Pain Intensity, Interference With Enjoyment of Life, Interference With General Activity) Scale.

DESIGN

Cross-sectional data collected in 2021. Ordinary least squares regression analyses of ISS and PEG.

SETTING

Amazon Mechanical Turk workers.

PARTICIPANTS

1931 adults with back pain with an average age of 41 (range, 19-77); 48% were female, 16% Hispanic, 7% non-Hispanic Black, 5% non-Hispanic Asian, and 71% non-Hispanic White (N=1931).

INTERVENTIONS

Not applicable.

MAIN OUTCOME MEASURES

The Patient-Reported Outcomes Measurement Information System (PROMIS)-29+2 v2.1 survey that includes the ISS, and the 3-item PEG.

RESULTS

The ISS and PEG had a correlation coefficient of 0.74. The ISS accounted for 55% of the adjusted variance in the PEG and the standardized average deviation between observed and predicted scores (normalized mean absolute error) was 0.53. Likewise, the PEG explained 55% of the variance in the ISS with a normalized mean absolute error of 0.52.

CONCLUSIONS

This study provides a crosswalk between the ISS and PEG that can be used to predict one from the other. The regression equations can facilitate comparisons in studies that use different measures.

摘要

目的

将美国国立卫生研究院(NIH)疼痛联合会研究工作组提出的影响分层评分(ISS)转换为 PEG(疼痛强度、对生活享受的干扰、对一般活动的干扰)量表。

设计

2021 年收集的横断面数据。ISS 和 PEG 的普通最小二乘回归分析。

设置

亚马逊土耳其机器人工人。

参与者

1931 名背痛成年人,平均年龄 41 岁(范围 19-77 岁);48%为女性,16%为西班牙裔,7%为非西班牙裔黑人,5%为非西班牙裔亚裔,71%为非西班牙裔白人(N=1931)。

干预措施

不适用。

主要观察指标

包括 ISS 和 3 项 PEG 的患者报告结局测量信息系统(PROMIS)-29+2 v2.1 调查。

结果

ISS 和 PEG 的相关系数为 0.74。ISS 解释了 PEG 调整后方差的 55%,观察得分与预测得分之间的标准化平均偏差(归一化平均绝对误差)为 0.53。同样,PEG 解释了 ISS 方差的 55%,归一化平均绝对误差为 0.52。

结论

本研究提供了 ISS 和 PEG 之间的转换,可以用来预测另一个。回归方程可以促进使用不同测量方法的研究中的比较。

相似文献

1
Crosswalking the National Institutes of Health Impact Stratification Score to the PEG.将国家卫生研究院影响分层评分转化为 PEG。
Arch Phys Med Rehabil. 2023 Mar;104(3):425-429. doi: 10.1016/j.apmr.2022.08.006. Epub 2022 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验