Suppr超能文献

基于集成学习的物联网网络中传感器遥测数据的 IDS。

Ensemble learning-based IDS for sensors telemetry data in IoT networks.

机构信息

Department of Computer Science, Quaid-i-Azam University, Islamabad, Pakistan.

Department of Computer Science, College of Computer, Qassim University, Buraydah 51452, Saudi Arabia.

出版信息

Math Biosci Eng. 2022 Jul 25;19(10):10550-10580. doi: 10.3934/mbe.2022493.

Abstract

The Internet of Things (IoT) is a paradigm that connects a range of physical smart devices to provide ubiquitous services to individuals and automate their daily tasks. IoT devices collect data from the surrounding environment and communicate with other devices using different communication protocols such as CoAP, MQTT, DDS, etc. Study shows that these protocols are vulnerable to attack and prove a significant threat to IoT telemetry data. Within a network, IoT devices are interdependent, and the behaviour of one device depends on the data coming from another device. An intruder exploits vulnerabilities of a device's interdependent feature and can alter the telemetry data to indirectly control the behaviour of other dependent devices in a network. Therefore, securing IoT devices have become a significant concern in IoT networks. The research community often proposes intrusion Detection Systems (IDS) using different techniques. One of the most adopted techniques is machine learning (ML) based intrusion detection. This study suggests a stacking-based ensemble model makes IoT devices more intelligent for detecting unusual behaviour in IoT networks. The TON-IoT (2020) dataset is used to assess the effectiveness of the proposed model. The proposed model achieves significant improvements in accuracy and other evaluation measures in binary and multi-class classification scenarios for most of the sensors compared to traditional ML algorithms and other ensemble techniques.

摘要

物联网 (IoT) 是一种连接各种物理智能设备的范例,旨在为个人提供无处不在的服务并自动化他们的日常任务。IoT 设备从周围环境中收集数据,并使用不同的通信协议(如 CoAP、MQTT、DDS 等)与其他设备进行通信。研究表明,这些协议容易受到攻击,对 IoT 遥测数据构成重大威胁。在网络中,IoT 设备是相互依存的,一个设备的行为取决于来自另一个设备的数据。入侵者利用设备相互依存特性的漏洞,可以篡改遥测数据,从而间接地控制网络中其他依赖设备的行为。因此,保护 IoT 设备已成为 IoT 网络中的一个重要关注点。研究人员经常使用不同的技术提出入侵检测系统 (IDS)。其中一种最常采用的技术是基于机器学习 (ML) 的入侵检测。本研究提出了一种基于堆叠的集成模型,使 IoT 设备在检测 IoT 网络中的异常行为方面更加智能。该研究使用 TON-IoT(2020)数据集来评估所提出模型的有效性。与传统的 ML 算法和其他集成技术相比,所提出的模型在大多数传感器的二进制和多类分类场景中在准确性和其他评估指标方面都取得了显著的提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验