Department of Computer Sciences, Quaid-i-Azam University, Islamabad 44000, Pakistan.
School of Computing, Edinburgh Napier University, Edinburgh EH10 5DT, UK.
Sensors (Basel). 2021 Oct 22;21(21):7016. doi: 10.3390/s21217016.
A large number of smart devices in Internet of Things (IoT) environments communicate via different messaging protocols. Message Queuing Telemetry Transport (MQTT) is a widely used publish-subscribe-based protocol for the communication of sensor or event data. The publish-subscribe strategy makes it more attractive for intruders and thus increases the number of possible attacks over MQTT. In this paper, we proposed a Deep Neural Network (DNN) for intrusion detection in the MQTT-based protocol and also compared its performance with other traditional machine learning (ML) algorithms, such as a Naive Bayes (NB), Random Forest (RF), k-Nearest Neighbour (kNN), Decision Tree (DT), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRUs). The performance is proved using two different publicly available datasets, including (1) MQTT-IoT-IDS2020 and (2) a dataset with three different types of attacks, such as Man in the Middle (MitM), Intrusion in the network, and Denial of Services (DoS). The MQTT-IoT-IDS2020 contains three abstract-level features, including Uni-Flow, Bi-Flow, and Packet-Flow. The results for the first dataset and binary classification show that the DNN-based model achieved 99.92%, 99.75%, and 94.94% accuracies for Uni-flow, Bi-flow, and Packet-flow, respectively. However, in the case of multi-label classification, these accuracies reduced to 97.08%, 98.12%, and 90.79%, respectively. On the other hand, the proposed DNN model attains the highest accuracy of 97.13% against LSTM and GRUs for the second dataset.
物联网 (IoT) 环境中的大量智能设备通过不同的消息传递协议进行通信。消息队列遥测传输 (MQTT) 是一种广泛使用的基于发布-订阅的协议,用于传感器或事件数据的通信。发布-订阅策略使其对入侵者更具吸引力,从而增加了 MQTT 上可能发生的攻击数量。在本文中,我们提出了一种用于基于 MQTT 的协议中的入侵检测的深度神经网络 (DNN),并将其性能与其他传统机器学习 (ML) 算法进行了比较,例如朴素贝叶斯 (NB)、随机森林 (RF)、k-最近邻 (kNN)、决策树 (DT)、长短期记忆 (LSTM) 和门控循环单元 (GRUs)。使用两个不同的公开可用数据集证明了性能,包括 (1) MQTT-IoT-IDS2020 和 (2) 具有三种不同类型攻击的数据集,例如中间人 (MitM)、网络入侵和拒绝服务 (DoS)。MQTT-IoT-IDS2020 包含三个抽象级别的特征,包括单流、双流和数据包流。对于第一个数据集和二进制分类的结果表明,基于 DNN 的模型在单流、双流和数据包流上分别实现了 99.92%、99.75%和 94.94%的准确率。然而,在多标签分类的情况下,这些准确率分别降低到 97.08%、98.12%和 90.79%。另一方面,对于第二个数据集,所提出的 DNN 模型针对 LSTM 和 GRUs 实现了 97.13%的最高准确率。