Suppr超能文献

一种深度学习框架揭示二元胶体混合物中的组成顺序和自组装途径。

A Deep Learning Framework Discovers Compositional Order and Self-Assembly Pathways in Binary Colloidal Mixtures.

作者信息

Mao Runfang, O'Leary Jared, Mesbah Ali, Mittal Jeetain

机构信息

Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States.

Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States.

出版信息

JACS Au. 2022 Jul 19;2(8):1818-1828. doi: 10.1021/jacsau.2c00111. eCollection 2022 Aug 22.

Abstract

Binary colloidal superlattices (BSLs) have demonstrated enormous potential for the design of advanced multifunctional materials that can be synthesized via colloidal self-assembly. However, mechanistic understanding of the three-dimensional self-assembly of BSLs is largely limited due to a lack of tractable strategies for characterizing the many two-component structures that can appear during the self-assembly process. To address this gap, we present a framework for colloidal crystal structure characterization that uses branched graphlet decomposition with deep learning to systematically and quantitatively describe the self-assembly of BSLs at the single-particle level. Branched graphlet decomposition is used to evaluate local structure via high-dimensional neighborhood graphs that quantify both structural order (e.g., body-centered-cubic vs face-centered-cubic) and compositional order (e.g., substitutional defects) of each individual particle. Deep autoencoders are then used to efficiently translate these neighborhood graphs into low-dimensional manifolds from which relationships among neighborhood graphs can be more easily inferred. We demonstrate the framework on in silico systems of DNA-functionalized particles, in which two well-recognized design parameters, particle size ratio and interparticle potential well depth can be adjusted independently. The framework reveals that binary colloidal mixtures with small interparticle size disparities (i.e., A- and B-type particle radius ratios of / = 0.8 to / = 0.95) can promote the self-assembly of defect-free BSLs much more effectively than systems of identically sized particles, as nearly defect-free BCC-CsCl, FCC-CuAu, and IrV crystals are observed in the former case. The framework additionally reveals that size-disparate colloidal mixtures can undergo nonclassical nucleation pathways where BSLs evolve from dense amorphous precursors, instead of directly nucleating from dilute solution. These findings illustrate that the presented characterization framework can assist in enhancing mechanistic understanding of the self-assembly of binary colloidal mixtures, which in turn can pave the way for engineering the growth of defect-free BSLs.

摘要

二元胶体超晶格(BSLs)在通过胶体自组装合成的先进多功能材料设计中展现出了巨大潜力。然而,由于缺乏用于表征自组装过程中可能出现的众多二元结构的易处理策略,对BSLs三维自组装的机理理解在很大程度上受到限制。为了填补这一空白,我们提出了一个用于胶体晶体结构表征的框架,该框架使用深度学习的分支图元分解在单粒子水平上系统地、定量地描述BSLs的自组装。分支图元分解用于通过高维邻域图评估局部结构,该邻域图量化每个单个粒子的结构序(例如,体心立方与面心立方)和组成序(例如,替代缺陷)。然后使用深度自动编码器将这些邻域图有效地转换为低维流形,从中可以更容易地推断邻域图之间的关系。我们在DNA功能化粒子的计算机模拟系统上演示了该框架,其中两个公认的设计参数,即粒径比和粒子间势阱深度可以独立调整。该框架表明,与粒径相同的粒子系统相比,粒子间尺寸差异小的二元胶体混合物(即A和B型粒子半径比 / = 0.8至 / = 0.95)能够更有效地促进无缺陷BSLs的自组装,因为在前一种情况下观察到了近乎无缺陷的体心立方 - 氯化铯、面心立方 - 铜金和铱钒晶体。该框架还表明,尺寸不同的胶体混合物可以经历非经典成核途径,其中BSLs从致密的无定形前驱体演化而来,而不是直接从稀溶液中成核。这些发现表明,所提出的表征框架有助于增强对二元胶体混合物自组装的机理理解,这反过来又可以为设计无缺陷BSLs的生长铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c51/9400045/4a6bf08d01fa/au2c00111_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验