Suppr超能文献

基于局部和颜色的稀疏编码通过自适应分解实现眼底图像中的异常检测。

Anomaly detection in fundus images by self-adaptive decomposition via local and color based sparse coding.

作者信息

Du Yuchen, Wang Lisheng, Chen Benzhi, An Chengyang, Liu Hao, Fan Ying, Wang Xiuying, Xu Xun

机构信息

Department of Automation, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.

Department of Ophthalmology, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photo Medicine, Shanghai General Hospital, SJTU School of Medicine, 100 Haining Road, Shanghai, 200080, China.

出版信息

Biomed Opt Express. 2022 Jul 21;13(8):4261-4277. doi: 10.1364/BOE.461224. eCollection 2022 Aug 1.

Abstract

Anomaly detection in color fundus images is challenging due to the diversity of anomalies. The current studies detect anomalies from fundus images by learning their background images, however, ignoring the affluent characteristics of anomalies. In this paper, we propose a simultaneous modeling strategy in both sequential sparsity and local and color saliency property of anomalies are utilized for the multi-perspective anomaly modeling. In the meanwhile, the Schatten -norm based metric is employed to better learn the heterogeneous background images, from where the anomalies are better discerned. Experiments and comparisons demonstrate the outperforming and effectiveness of the proposed method.

摘要

由于异常情况的多样性,彩色眼底图像中的异常检测具有挑战性。当前的研究通过学习眼底图像的背景图像来检测异常,但忽略了异常丰富的特征。在本文中,我们提出了一种同时建模策略,利用异常的序列稀疏性以及局部和颜色显著性属性进行多视角异常建模。同时,采用基于Schatten范数的度量来更好地学习异构背景图像,从而更清晰地辨别异常。实验和比较证明了所提方法的优越性和有效性。

相似文献

2
Individualized Statistical Modeling of Lesions in Fundus Images for Anomaly Detection.
IEEE Trans Med Imaging. 2023 Apr;42(4):1185-1196. doi: 10.1109/TMI.2022.3225422. Epub 2023 Apr 3.
5
Video Anomaly Detection with Sparse Coding Inspired Deep Neural Networks.基于稀疏编码启发的深度神经网络的视频异常检测。
IEEE Trans Pattern Anal Mach Intell. 2021 Mar;43(3):1070-1084. doi: 10.1109/TPAMI.2019.2944377. Epub 2021 Feb 4.
6
Video Saliency Detection via Sparsity-Based Reconstruction and Propagation.基于稀疏重建与传播的视频显著度检测
IEEE Trans Image Process. 2019 Oct;28(10):4819-4831. doi: 10.1109/TIP.2019.2910377. Epub 2019 May 2.
8
Intrinsic image decomposition using a sparse representation of reflectance.基于反射率稀疏表示的固有图像分解。
IEEE Trans Pattern Anal Mach Intell. 2013 Dec;35(12):2904-15. doi: 10.1109/TPAMI.2013.136.
9
10
Multi-Perspective Anomaly Detection.多视角异常检测。
Sensors (Basel). 2021 Aug 6;21(16):5311. doi: 10.3390/s21165311.

本文引用的文献

7
Weakly Supervised Lesion Detection From Fundus Images.眼底图像的弱监督病灶检测。
IEEE Trans Med Imaging. 2019 Jun;38(6):1501-1512. doi: 10.1109/TMI.2018.2885376. Epub 2018 Dec 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验