Suppr超能文献

基于稀疏编码启发的深度神经网络的视频异常检测。

Video Anomaly Detection with Sparse Coding Inspired Deep Neural Networks.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2021 Mar;43(3):1070-1084. doi: 10.1109/TPAMI.2019.2944377. Epub 2021 Feb 4.

Abstract

This paper presents an anomaly detection method that is based on a sparse coding inspired Deep Neural Networks (DNN). Specifically, in light of the success of sparse coding based anomaly detection, we propose a Temporally-coherent Sparse Coding (TSC), where a temporally-coherent term is used to preserve the similarity between two similar frames. The optimization of sparse coefficients in TSC with the Sequential Iterative Soft-Thresholding Algorithm (SIATA) is equivalent to a special stacked Recurrent Neural Networks (sRNN) architecture. Further, to reduce the computational cost in alternatively updating the dictionary and sparse coefficients in TSC optimization and to alleviate hyperparameters selection in TSC, we stack one more layer on top of the TSC-inspired sRNN to reconstruct the inputs, and arrive at an sRNN-AE. We further improve sRNN-AE in the following aspects: i) rather than using a predefined similarity measurement between two frames, we propose to learn a data-dependent similarity measurement between neighboring frames in sRNN-AE to make it more suitable for anomaly detection; ii) to reduce computational costs in the inference stage, we reduce the depth of the sRNN in sRNN-AE and, consequently, our framework achieves real-time anomaly detection; iii) to improve computational efficiency, we conduct temporal pooling over the appearance features of several consecutive frames for summarizing information temporally, then we feed appearance features and temporally summarized features into a separate sRNN-AE for more robust anomaly detection. To facilitate anomaly detection evaluation, we also build a large-scale anomaly detection dataset which is even larger than the summation of all existing datasets for anomaly detection in terms of both the volume of data and the diversity of scenes. Extensive experiments on both a toy dataset under controlled settings and real datasets demonstrate that our method significantly outperforms existing methods, which validates the effectiveness of our sRNN-AE method for anomaly detection. Codes and data have been released at https://github.com/StevenLiuWen/sRNN_TSC_Anomaly_Detection.

摘要

本文提出了一种基于稀疏编码启发的深度神经网络(DNN)的异常检测方法。具体来说,鉴于基于稀疏编码的异常检测的成功,我们提出了一种时间一致的稀疏编码(TSC),其中使用时间一致项来保持两个相似帧之间的相似性。TSC 中稀疏系数的优化使用顺序迭代软阈值算法(SIATA),这相当于一种特殊的堆叠递归神经网络(sRNN)结构。此外,为了降低 TSC 优化中交替更新字典和稀疏系数的计算成本,以及缓解 TSC 中的超参数选择问题,我们在 TSC 启发的 sRNN 之上再堆叠一层来重构输入,并得到一个 sRNN-AE。我们进一步从以下几个方面改进了 sRNN-AE:i)我们不是使用两个帧之间的预定义相似度度量,而是在 sRNN-AE 中提出学习邻帧之间的数据相关相似度度量,使其更适合异常检测;ii)为了降低推断阶段的计算成本,我们在 sRNN-AE 中降低了 sRNN 的深度,因此我们的框架可以实现实时异常检测;iii)为了提高计算效率,我们对几个连续帧的外观特征进行时间池化,以时间方式对信息进行总结,然后将外观特征和时间总结特征输入到一个单独的 sRNN-AE 中,以进行更稳健的异常检测。为了方便异常检测评估,我们还构建了一个大规模异常检测数据集,该数据集在数据量和场景多样性方面甚至比现有的所有异常检测数据集的总和还要大。在受控设置下的玩具数据集和真实数据集上的广泛实验表明,我们的方法明显优于现有方法,验证了我们的 sRNN-AE 方法在异常检测中的有效性。代码和数据已在 https://github.com/StevenLiuWen/sRNN_TSC_Anomaly_Detection 上发布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验