Suppr超能文献

每个人身边的统计学:一项通过引文网络分析的影响研究。

Statistics in everyone's backyard: An impact study via citation network analysis.

作者信息

Wang Lijia, Tong Xin, Wang Y X Rachel

机构信息

Department of Mathematics, University of Southern California, Los Angeles, CA 90007, USA.

Department of Data Sciences and Operations, University of Southern California, Los Angeles, CA 90007, USA.

出版信息

Patterns (N Y). 2022 Jun 16;3(8):100532. doi: 10.1016/j.patter.2022.100532. eCollection 2022 Aug 12.

Abstract

Statistical methodologies are indispensable in data-driven scientific discoveries. In this paper, we make the first effort to understand the impact of recent statistical innovations on other scientific fields. By collecting comprehensive bibliometric data from the Web of Science database for selected statistical journals, we investigate the citation trends and compositions of citing fields over time, and we find increasing citation diversity. Furthermore, in a new setting, we apply a local clustering technique involving personalized PageRank with graph conductance for size selection to find the most relevant statistical innovation for a given external topic in other fields. Through a number of case studies, we show that the results from our citation data analysis align well with our knowledge and intuition about these external topics. Overall, we have found that the statistical theory and methods recently invented by the statistics community have made increasing impact on other scientific fields.

摘要

统计方法在数据驱动的科学发现中不可或缺。在本文中,我们首次尝试了解近期统计创新对其他科学领域的影响。通过从科学引文索引数据库中收集选定统计学期刊的全面文献计量数据,我们研究了随着时间推移被引趋势和引用领域的构成,发现引用多样性在增加。此外,在一个新的环境中,我们应用一种局部聚类技术,该技术涉及用于大小选择的带图传导性的个性化网页排名,以找到其他领域中给定外部主题最相关的统计创新。通过多个案例研究,我们表明我们的引文数据分析结果与我们对这些外部主题的知识和直觉非常吻合。总体而言,我们发现统计学界最近发明的统计理论和方法对其他科学领域的影响越来越大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a87a/9403407/d5f1a906d29c/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验