Dukic Vanja, Lopes Hedibert F, Polson Nicholas G
Applied Mathematics, University of Colorado at Boulder.
Department of Econometrics and Statistics, The University of Chicago Booth School of Business.
J Am Stat Assoc. 2012;107(500):1410-1426. doi: 10.1080/01621459.2012.713876. Epub 2012 Dec 21.
In this article, we use Google Flu Trends data together with a sequential surveillance model based on state-space methodology to track the evolution of an epidemic process over time. We embed a classical mathematical epidemiology model [a susceptible-exposed-infected-recovered (SEIR) model] within the state-space framework, thereby extending the SEIR dynamics to allow changes through time. The implementation of this model is based on a particle filtering algorithm, which learns about the epidemic process sequentially through time and provides updated estimated odds of a pandemic with each new surveillance data point. We show how our approach, in combination with sequential Bayes factors, can serve as an online diagnostic tool for influenza pandemic. We take a close look at the Google Flu Trends data describing the spread of flu in the United States during 2003-2009 and in nine separate U.S. states chosen to represent a wide range of health care and emergency system strengths and weaknesses. This article has online supplementary materials.
在本文中,我们使用谷歌流感趋势数据以及基于状态空间方法的序贯监测模型来追踪疫情随时间的演变。我们将经典的数学流行病学模型[易感-暴露-感染-康复(SEIR)模型]嵌入状态空间框架内,从而扩展了SEIR动态变化以允许其随时间变化。该模型的实现基于粒子滤波算法,该算法随时间序贯了解疫情过程,并随着每个新的监测数据点提供大流行的更新估计概率。我们展示了我们的方法与序贯贝叶斯因子相结合如何能够作为流感大流行的在线诊断工具。我们仔细研究了描述2003 - 2009年期间美国流感传播情况以及九个分别代表广泛医疗保健和应急系统优缺点的美国不同州的谷歌流感趋势数据。本文有在线补充材料。