Suppr超能文献

利用谷歌流感趋势数据和状态空间SEIR模型追踪流行病

Tracking Epidemics With Google Flu Trends Data and a State-Space SEIR Model.

作者信息

Dukic Vanja, Lopes Hedibert F, Polson Nicholas G

机构信息

Applied Mathematics, University of Colorado at Boulder.

Department of Econometrics and Statistics, The University of Chicago Booth School of Business.

出版信息

J Am Stat Assoc. 2012;107(500):1410-1426. doi: 10.1080/01621459.2012.713876. Epub 2012 Dec 21.

Abstract

In this article, we use Google Flu Trends data together with a sequential surveillance model based on state-space methodology to track the evolution of an epidemic process over time. We embed a classical mathematical epidemiology model [a susceptible-exposed-infected-recovered (SEIR) model] within the state-space framework, thereby extending the SEIR dynamics to allow changes through time. The implementation of this model is based on a particle filtering algorithm, which learns about the epidemic process sequentially through time and provides updated estimated odds of a pandemic with each new surveillance data point. We show how our approach, in combination with sequential Bayes factors, can serve as an online diagnostic tool for influenza pandemic. We take a close look at the Google Flu Trends data describing the spread of flu in the United States during 2003-2009 and in nine separate U.S. states chosen to represent a wide range of health care and emergency system strengths and weaknesses. This article has online supplementary materials.

摘要

在本文中,我们使用谷歌流感趋势数据以及基于状态空间方法的序贯监测模型来追踪疫情随时间的演变。我们将经典的数学流行病学模型[易感-暴露-感染-康复(SEIR)模型]嵌入状态空间框架内,从而扩展了SEIR动态变化以允许其随时间变化。该模型的实现基于粒子滤波算法,该算法随时间序贯了解疫情过程,并随着每个新的监测数据点提供大流行的更新估计概率。我们展示了我们的方法与序贯贝叶斯因子相结合如何能够作为流感大流行的在线诊断工具。我们仔细研究了描述2003 - 2009年期间美国流感传播情况以及九个分别代表广泛医疗保健和应急系统优缺点的美国不同州的谷歌流感趋势数据。本文有在线补充材料。

相似文献

10
Adaptive nowcasting of influenza outbreaks using Google searches.利用谷歌搜索进行流感疫情的适应性实时预测。
R Soc Open Sci. 2014 Oct 29;1(2):140095. doi: 10.1098/rsos.140095. eCollection 2014 Oct.

引用本文的文献

2
Weak-form inference for hybrid dynamical systems in ecology.生态学中混合动态系统的弱形式推理。
J R Soc Interface. 2024 Dec;21(221):20240376. doi: 10.1098/rsif.2024.0376. Epub 2024 Dec 18.
3
REAL-TIME MECHANISTIC BAYESIAN FORECASTS OF COVID-19 MORTALITY.2019年冠状病毒病死亡率的实时机制贝叶斯预测
Ann Appl Stat. 2023 Sep;17(3):1801-1819. doi: 10.1214/22-aoas1671. Epub 2023 Sep 7.
5
Estimating the instantaneous reproduction number () .估计瞬时再生数()。
Infect Dis Model. 2023 Aug 11;8(4):1002-1014. doi: 10.1016/j.idm.2023.08.003. eCollection 2023 Dec.

本文引用的文献

2
The transmissibility and control of pandemic influenza A (H1N1) virus.大流行性流感 A(H1N1)病毒的传播和控制。
Science. 2009 Oct 30;326(5953):729-33. doi: 10.1126/science.1177373. Epub 2009 Sep 10.
5
8
Inapparent infections and cholera dynamics.隐性感染与霍乱动态
Nature. 2008 Aug 14;454(7206):877-80. doi: 10.1038/nature07084.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验