Suppr超能文献

内容特征可预测新冠病毒谣言的可信度。

Content characteristics predict the putative authenticity of COVID-19 rumors.

作者信息

Zhao Jingyi, Fu Cun, Kang Xin

机构信息

College of International Studies, Southwest University, Chongqing, China.

School of Foreign Languages and Cultures, Chongqing University, Chongqing, China.

出版信息

Front Public Health. 2022 Aug 10;10:920103. doi: 10.3389/fpubh.2022.920103. eCollection 2022.

Abstract

Rumors regarding COVID-19 have been prevalent on the Internet and affect the control of the COVID-19 pandemic. Using 1,296 COVID-19 rumors collected from an online platform (piyao.org.cn) in China, we found measurable differences in the content characteristics between true and false rumors. We revealed that the length of a rumor's headline is negatively related to the probability of a rumor being true [odds ratio () = 0.37, (0.30, 0.44)]. In contrast, the length of a rumor's statement is positively related to this probability [ = 1.11, (1.09, 1.13)]. In addition, we found that a rumor is more likely to be true if it contains concrete places [ = 20.83, (9.60, 48.98)] and it specifies the date or time of events [ = 22.31, (9.63, 57.92)]. The rumor is also likely to be true when it does not evoke positive or negative emotions [ = 0.15, (0.08, 0.29)] and does not include a call for action [ = 0.06, (0.02, 0.12)]. By contrast, the presence of source cues [ = 0.64, (0.31, 1.28)] and visuals [ = 1.41, (0.53, 3.73)] is related to this probability with limited significance. Our findings provide some clues for identifying COVID-19 rumors using their content characteristics.

摘要

关于新冠病毒的谣言在互联网上盛行,影响了新冠疫情的防控。通过收集中国一个在线平台(辟谣.org.cn)上的1296条新冠谣言,我们发现真假谣言在内容特征上存在显著差异。我们发现,谣言标题的长度与谣言为真的概率呈负相关[优势比(OR)=0.37,95%置信区间(CI)(0.30,0.44)]。相反,谣言陈述的长度与这一概率呈正相关[OR = 1.11,95%CI(1.09,1.13)]。此外,我们发现,如果谣言包含具体地点[OR = 20.83,95%CI(9.60,48.98)]且明确了事件的日期或时间[OR = 22.31,95%CI(9.63,57.92)],则该谣言更有可能是真的。当谣言不引发积极或消极情绪[OR = 0.15,95%CI(0.08,0.29)]且不包含行动呼吁[OR = 0.06,95%CI(0.02,0.12)]时,谣言也可能是真的。相比之下,来源线索[OR = 0.64,95%CI(0.31,1.28)]和视觉元素[OR = 1.41,95%CI(0.53,3.73)]与这一概率的相关性有限。我们的研究结果为利用内容特征识别新冠谣言提供了一些线索。

相似文献

1
Content characteristics predict the putative authenticity of COVID-19 rumors.内容特征可预测新冠病毒谣言的可信度。
Front Public Health. 2022 Aug 10;10:920103. doi: 10.3389/fpubh.2022.920103. eCollection 2022.
10
Linguistic indicators for predicting the veracity of online health rumors.用于预测网络健康谣言真实性的语言指标。
Front Public Health. 2024 Jan 10;11:1278503. doi: 10.3389/fpubh.2023.1278503. eCollection 2023.

本文引用的文献

2
Detecting fake news by exploring the consistency of multimodal data.通过探索多模态数据的一致性来检测虚假新闻。
Inf Process Manag. 2021 Sep;58(5):102610. doi: 10.1016/j.ipm.2021.102610. Epub 2021 May 3.
5
ProBlock: a novel approach for fake news detection.ProBlock:一种检测虚假新闻的新方法。
Cluster Comput. 2021;24(4):3779-3795. doi: 10.1007/s10586-021-03361-w. Epub 2021 Aug 4.
6
CHECKED: Chinese COVID-19 fake news dataset.已检查:中国新冠疫情虚假新闻数据集。
Soc Netw Anal Min. 2021;11(1):58. doi: 10.1007/s13278-021-00766-8. Epub 2021 Jun 22.
9
Interdisciplinary Lessons Learned While Researching Fake News.研究假新闻过程中的跨学科经验教训。
Front Psychol. 2020 Dec 16;11:537612. doi: 10.3389/fpsyg.2020.537612. eCollection 2020.
10
Reliance on emotion promotes belief in fake news.依赖情感会促进对假新闻的信任。
Cogn Res Princ Implic. 2020 Oct 7;5(1):47. doi: 10.1186/s41235-020-00252-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验