Döhne Noah, Falck Alice, Janach Gabriel M S, Byvaltcev Egor, Strauss Ulf
Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
Institute of Neuroscience, Lobachevsky State, University of Nizhny Novgorod, Nizhny Novgorod, Russia.
Front Cell Neurosci. 2022 Aug 10;16:913299. doi: 10.3389/fncel.2022.913299. eCollection 2022.
Interferon-γ (IFN-γ), a cytokine with neuromodulatory properties, has been shown to enhance inhibitory transmission. Because early inhibitory neurotransmission sculpts functional neuronal circuits, its developmental alteration may have grave consequences. Here, we investigated the acute effects of IFN-γ on γ-amino-butyric acid (GABA)ergic currents in layer 5 pyramidal neurons of the somatosensory cortex of rats at the end of the first postnatal week, a period of GABA-dependent cortical maturation. IFN-γ acutely increased the frequency and amplitude of spontaneous/miniature inhibitory postsynaptic currents (s/mIPSC), and this could not be reversed within 30 min. Neither the increase in amplitude nor frequency of IPSCs was due to upregulated interneuron excitability as revealed by current clamp recordings of layer 5 interneurons labeled with VGAT-Venus in transgenic rats. As we previously reported in more mature animals, IPSC amplitude increase upon IFN-γ activity was dependent on postsynaptic protein kinase C (PKC), indicating a similar activating mechanism. Unlike augmented IPSC amplitude, however, we did not consistently observe an increased IPSC frequency in our previous studies on more mature animals. Focusing on increased IPSC frequency, we have now identified a different activating mechanism-one that is independent of postsynaptic PKC but is dependent on inducible nitric oxide synthase (iNOS) and soluble guanylate cyclase (sGC). In addition, IFN-γ shifted short-term synaptic plasticity toward facilitation as revealed by a paired-pulse paradigm. The latter change in presynaptic function was not reproduced by the application of a nitric oxide donor. Functionally, IFN-γ-mediated alterations in GABAergic transmission overall constrained early neocortical activity in a partly nitric oxide-dependent manner as revealed by microelectrode array field recordings in brain slices analyzed with a spike-sorting algorithm. In summary, with IFN-γ-induced, NO-dependent augmentation of spontaneous GABA release, we have here identified a mechanism by which inflammation in the central nervous system (CNS) plausibly modulates neuronal development.
γ干扰素(IFN-γ)是一种具有神经调节特性的细胞因子,已被证明可增强抑制性传递。由于早期抑制性神经传递塑造了功能性神经元回路,其发育改变可能会产生严重后果。在此,我们研究了IFN-γ对出生后第一周结束时大鼠体感皮层第5层锥体神经元中γ-氨基丁酸(GABA)能电流的急性影响,这是一个GABA依赖的皮层成熟时期。IFN-γ急性增加了自发/微小抑制性突触后电流(s/mIPSC)的频率和幅度,且在30分钟内无法逆转。通过对转基因大鼠中用VGAT-Venus标记的第5层中间神经元进行电流钳记录发现,IPSC幅度和频率的增加均不是由于中间神经元兴奋性上调所致。正如我们之前在更成熟动物中所报道的,IFN-γ活性导致的IPSC幅度增加依赖于突触后蛋白激酶C(PKC),表明存在类似的激活机制。然而,与IPSC幅度增加不同的是,我们在之前对更成熟动物的研究中并未始终观察到IPSC频率增加。针对IPSC频率增加的情况,我们现在确定了一种不同的激活机制——一种独立于突触后PKC但依赖于诱导型一氧化氮合酶(iNOS)和可溶性鸟苷酸环化酶(sGC)的机制。此外,如配对脉冲范式所示,IFN-γ使短期突触可塑性向易化方向转变。一氧化氮供体的应用并未重现突触前功能的后一种变化。在功能上,通过用尖峰排序算法分析脑片的微电极阵列场记录发现,IFN-γ介导的GABA能传递改变总体上以部分一氧化氮依赖的方式限制了早期新皮层活动。总之,通过IFN-γ诱导的、NO依赖的自发性GABA释放增加,我们在此确定了一种机制,通过该机制中枢神经系统(CNS)中的炎症可能会调节神经元发育。