Suppr超能文献

表达遗憾:可信区间的统一观点。

Expressing regret: a unified view of credible intervals.

作者信息

Rice Kenneth, Ye Lingbo

机构信息

Department of Biostatistics, University of Washington.

出版信息

Am Stat. 2022;76(3):248-256. doi: 10.1080/00031305.2022.2039764. Epub 2022 Mar 15.

Abstract

Posterior uncertainty is typically summarized as a credible interval, an interval in the parameter space that contains a fixed proportion - usually 95% - of the posterior's support. For multivariate parameters, credible sets perform the same role. There are of course many potential 95% intervals from which to choose, yet even standard choices are rarely justified in any formal way. In this paper we give a general method, focusing on the loss function that motivates an estimate - the Bayes rule - around which we construct a credible set. The set contains all points which, as estimates, would have minimally-worse expected loss than the Bayes rule: we call this excess expected loss 'regret'. The approach can be used for any model and prior, and we show how it justifies all widely-used choices of credible interval/set. Further examples show how it provides insights into more complex estimation problems.

摘要

后验不确定性通常被总结为一个可信区间,即参数空间中的一个区间,它包含后验支持的固定比例(通常为95%)。对于多变量参数,可信集发挥着相同的作用。当然,有许多潜在的95%区间可供选择,但即使是标准选择也很少以任何正式方式得到论证。在本文中,我们给出了一种通用方法,重点关注激励估计的损失函数——贝叶斯规则,围绕该规则我们构建一个可信集。该集合包含所有作为估计值的点,这些点的预期损失比贝叶斯规则的预期损失至多略差:我们将这种额外的预期损失称为“遗憾”。该方法可用于任何模型和先验分布,并且我们展示了它如何论证所有广泛使用的可信区间/集的选择。进一步的例子展示了它如何为更复杂的估计问题提供见解。

相似文献

1
Expressing regret: a unified view of credible intervals.表达遗憾:可信区间的统一观点。
Am Stat. 2022;76(3):248-256. doi: 10.1080/00031305.2022.2039764. Epub 2022 Mar 15.
4
Uncertainty in clinical prediction rules: the value of credible intervals.临床预测规则中的不确定性:可信区间的价值。
J Orthop Sports Phys Ther. 2014 Feb;44(2):85-91. doi: 10.2519/jospt.2014.4877. Epub 2013 Oct 30.
6
Frequentist accuracy of Bayesian estimates.贝叶斯估计的频率主义准确性。
J R Stat Soc Series B Stat Methodol. 2015 Jun;77(3):617-646. doi: 10.1111/rssb.12080.
10
Credible Intervals for Precision and Recall Based on a K-Fold Cross-Validated Beta Distribution.
Neural Comput. 2016 Aug;28(8):1694-722. doi: 10.1162/NECO_a_00857. Epub 2016 Jun 27.

引用本文的文献

1
Bayesian Statistics for Medical Devices: Progress Since 2010.贝叶斯统计学在医疗器械中的应用:2010 年以来的进展。
Ther Innov Regul Sci. 2023 May;57(3):453-463. doi: 10.1007/s43441-022-00495-w. Epub 2023 Mar 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验