Rice Kenneth, Ye Lingbo
Department of Biostatistics, University of Washington.
Am Stat. 2022;76(3):248-256. doi: 10.1080/00031305.2022.2039764. Epub 2022 Mar 15.
Posterior uncertainty is typically summarized as a credible interval, an interval in the parameter space that contains a fixed proportion - usually 95% - of the posterior's support. For multivariate parameters, credible sets perform the same role. There are of course many potential 95% intervals from which to choose, yet even standard choices are rarely justified in any formal way. In this paper we give a general method, focusing on the loss function that motivates an estimate - the Bayes rule - around which we construct a credible set. The set contains all points which, as estimates, would have minimally-worse expected loss than the Bayes rule: we call this excess expected loss 'regret'. The approach can be used for any model and prior, and we show how it justifies all widely-used choices of credible interval/set. Further examples show how it provides insights into more complex estimation problems.
后验不确定性通常被总结为一个可信区间,即参数空间中的一个区间,它包含后验支持的固定比例(通常为95%)。对于多变量参数,可信集发挥着相同的作用。当然,有许多潜在的95%区间可供选择,但即使是标准选择也很少以任何正式方式得到论证。在本文中,我们给出了一种通用方法,重点关注激励估计的损失函数——贝叶斯规则,围绕该规则我们构建一个可信集。该集合包含所有作为估计值的点,这些点的预期损失比贝叶斯规则的预期损失至多略差:我们将这种额外的预期损失称为“遗憾”。该方法可用于任何模型和先验分布,并且我们展示了它如何论证所有广泛使用的可信区间/集的选择。进一步的例子展示了它如何为更复杂的估计问题提供见解。