Suppr超能文献

研究贝叶斯因子与可信区间分离之间的关系。

Investigating the relationship between the Bayes factor and the separation of credible intervals.

作者信息

Wei Zhengxiao, Nathoo Farouk S, Masson Michael E J

机构信息

Department of Mathematics and Statistics, University of Victoria, P.O. Box 1700 STN CSC, Victoria, British Columbia, V8W 2Y2, Canada.

Department of Psychology, University of Victoria, Victoria, British Columbia, Canada.

出版信息

Psychon Bull Rev. 2023 Oct;30(5):1759-1781. doi: 10.3758/s13423-023-02295-1. Epub 2023 May 11.

Abstract

We examined the relationship between the Bayes factor and the separation of credible intervals in between- and within-subject designs under a range of effect and sample sizes. For the within-subject case, we considered five intervals: (1) the within-subject confidence interval of Loftus and Masson (1994); (2) the within-subject Bayesian interval developed by Nathoo et al. (2018), whose derivation conditions on estimated random effects; (3) and (4) two modifications of (2) based on a proposal by Heck (2019) to allow for shrinkage and account for uncertainty in the estimation of random effects; and (5) the standard Bayesian highest-density interval. We derived and observed through simulations a clear and consistent relationship between the Bayes factor and the separation of credible intervals. Remarkably, for a given sample size, this relationship is described well by a simple quadratic exponential curve and is most precise in case (4). In contrast, interval (5) is relatively wide due to between-subjects variability and is likely to obscure effects when used in within-subject designs, rendering its relationship with the Bayes factor unclear in that case. We discuss how the separation percentage of (4), combined with knowledge of the sample size, could provide evidence in support of either a null or an alternative hypothesis. We also present a case study with example data and provide an R package 'rmBayes' to enable computation of each of the within-subject credible intervals investigated here using a number of possible prior distributions.

摘要

我们研究了在一系列效应大小和样本量下,贝叶斯因子与组间和组内设计中可信区间分离之间的关系。对于组内情况,我们考虑了五个区间:(1)洛夫特斯和马森(1994)提出的组内置信区间;(2)纳图等人(2018)开发的组内贝叶斯区间,其推导基于估计的随机效应;(3)和(4)基于赫克(2019)的提议对(2)进行的两种修改,以允许收缩并考虑随机效应估计中的不确定性;以及(5)标准贝叶斯最高密度区间。我们通过模拟推导并观察到贝叶斯因子与可信区间分离之间存在清晰且一致的关系。值得注意的是,对于给定的样本量,这种关系可以用一条简单的二次指数曲线很好地描述,并且在情况(4)中最为精确。相比之下,区间(5)由于个体间变异性而相对较宽,在组内设计中使用时可能会掩盖效应,导致在这种情况下其与贝叶斯因子的关系不明确。我们讨论了(4)的分离百分比与样本量知识相结合如何能够为零假设或备择假设提供支持证据。我们还给出了一个带有示例数据的案例研究,并提供了一个R包“rmBayes”,以便能够使用多种可能的先验分布来计算此处研究的每个组内可信区间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验