Tenison Caitlin, Ling Guangming, McCulla Laura
Educational Testing Service, Princeton, NJ USA.
Int J Artif Intell Educ. 2022 Aug 19:1-29. doi: 10.1007/s40593-022-00307-0.
In this paper we use historic score-reporting records and test-taker metadata to inform data-driven recommendations that support international students in their choice of undergraduate institutions for study in the United States. We investigate the use of Structural Topic Modeling (STM) as a context-aware, probabilistic recommendation method that uses test-takers' selections and metadata to model the latent space of college preferences. We present the model results from two perspectives: 1) to understand the impact of TOEFL score and test year on test-takers' preferences and choices and 2) to recommend to the test-taker additional undergraduate institutions for application consideration. We find that TOEFL scores can explain variance in the probability that test-takers belong to certain preference-groups and, by accounting for this, our system adjusts recommendations based on student score. We also find that the inclusion of year, while not significantly altering recommendations, does enable us to capture minor changes in the relative popularity of similar institutions. The performance of this model demonstrates the utility of this approach for providing students with personalized college recommendations and offers a useful baseline approach that can be extended with additional data sources.
在本文中,我们使用历史成绩报告记录和考生元数据,以提供数据驱动的建议,支持国际学生选择美国的本科院校进行学习。我们研究了结构主题模型(STM)作为一种情境感知概率推荐方法的应用,该方法利用考生的选择和元数据来建模大学偏好的潜在空间。我们从两个角度展示模型结果:1)了解托福成绩和考试年份对考生偏好和选择的影响;2)向考生推荐其他本科院校以供申请时考虑。我们发现托福成绩可以解释考生属于某些偏好组的概率差异,考虑到这一点,我们的系统会根据学生成绩调整推荐。我们还发现,纳入年份虽然没有显著改变推荐,但确实使我们能够捕捉到类似院校相对受欢迎程度的细微变化。该模型的性能证明了这种方法在为学生提供个性化大学推荐方面的实用性,并提供了一种有用的基线方法,可通过额外的数据源进行扩展。