Yu Qiushi
University of Michigan, Ann Arbor, MI, USA.
J Appl Stat. 2021 May 20;49(12):3002-3021. doi: 10.1080/02664763.2021.1931820. eCollection 2022.
Scholars have been interested in the politicization of humans rights within the United Nations for some time. However, previous research typically looks at simple associations between voting coalitions and observable variables, such as geographic location or membership in international organizations. Our study is the first attempt at estimating the latent coalition structure based on the voting data. We propose a Bayesian Dynamic Dirichlet Process Mixture (DDPM) model to identify voting coalitions based on roll call vote data across multiple time periods. We also propose post-processing methods for analyzing the outputs of the DDPM model. We apply these methods to the United Nations General Assembly (UNGA) human rights roll call vote data from 1992 to 2017. We identify human rights voting coalitions in the UNGA after the Cold War, and polarizing resolutions that divide countries into different coalitions.
一段时间以来,学者们一直对联合国人权问题的政治化感兴趣。然而,以往的研究通常只考察投票联盟与可观察变量之间的简单关联,比如地理位置或国际组织成员身份。我们的研究首次尝试基于投票数据来估计潜在的联盟结构。我们提出一种贝叶斯动态狄利克雷过程混合(DDPM)模型,以根据多个时间段的唱名表决数据来识别投票联盟。我们还提出了用于分析DDPM模型输出结果的后处理方法。我们将这些方法应用于1992年至2017年联合国大会(UNGA)的人权唱名表决数据。我们识别出冷战后联合国大会中的人权投票联盟,以及将各国划分为不同联盟的两极分化决议。