Suppr超能文献

抗癌药物博来霉素通过改变磷脂生物合成显示出强大的抗真菌活性。

The Anticancer Drug Bleomycin Shows Potent Antifungal Activity by Altering Phospholipid Biosynthesis.

机构信息

Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.

Molecular Design and Synthesis Core, Rutgers University Biomolecular Innovations Cores, Office for Research, Rutgers University, Piscataway, New Jersey, USA.

出版信息

Microbiol Spectr. 2022 Oct 26;10(5):e0086222. doi: 10.1128/spectrum.00862-22. Epub 2022 Aug 29.

Abstract

Invasive fungal infections are difficult to treat with limited drug options, mainly because fungi are eukaryotes and share many cellular mechanisms with the human host. Most current antifungal drugs are either fungistatic or highly toxic. Therefore, there is a critical need to identify important fungal specific drug targets for novel antifungal development. Numerous studies have shown the fungal phosphatidylserine (PS) biosynthetic pathway to be a potential target. It is synthesized from CDP-diacylglycerol and serine, and the fungal PS synthesis route is different from that in mammalian cells, in which preexisting phospholipids are utilized to produce PS in a base-exchange reaction. In this study, we utilized a Saccharomyces cerevisiae heterologous expression system to screen for inhibitors of Cryptococcus PS synthase Cho1, a fungi-specific enzyme essential for cell viability. We identified an anticancer compound, bleomycin, as a positive candidate that showed a phospholipid-dependent antifungal effect. Its inhibition on fungal growth can be restored by ethanolamine supplementation. Further exploration of the mechanism of action showed that bleomycin treatment damaged the mitochondrial membrane in yeast cells, leading to increased generation of reactive oxygen species (ROS), whereas supplementation with ethanolamine helped to rescue bleomycin-induced damage. Our results indicate that bleomycin does not specifically inhibit the PS synthase enzyme; however, it may affect phospholipid biosynthesis through disruption of mitochondrial function, namely, the synthesis of phosphatidylethanolamine (PE) and phosphatidylcholine (PC), which helps cells maintain membrane composition and functionality. Invasive fungal pathogens cause significant morbidity and mortality, with over 1.5 million deaths annually. Because fungi are eukaryotes that share much of their cellular machinery with the host, our armamentarium of antifungal drugs is highly limited, with only three classes of antifungal drugs available. Drug toxicity and emerging resistance have limited their use. Hence, targeting fungi-specific enzymes that are important for fungal survival, growth, or virulence poses a strategy for novel antifungal development. In this study, we developed a heterologous expression system to screen for chemical compounds with activity against Cryptococcus phosphatidylserine synthase, Cho1, a fungi-specific enzyme that is essential for viability in C. neoformans. We confirmed the feasibility of this screen method and identified a previously unexplored role of the anticancer compound bleomycin in disrupting mitochondrial function and inhibiting phospholipid synthesis.

摘要

侵袭性真菌感染难以治疗,可供选择的药物有限,主要是因为真菌是真核生物,与宿主有许多细胞机制共享。目前大多数抗真菌药物要么是抑菌的,要么是高度有毒的。因此,迫切需要确定重要的真菌特异性药物靶点,以开发新的抗真菌药物。许多研究表明,真菌磷脂酰丝氨酸(PS)生物合成途径是一个潜在的靶点。它是由 CDP-二酰基甘油和丝氨酸合成的,真菌 PS 合成途径与哺乳动物细胞不同,在哺乳动物细胞中,利用预先存在的磷脂通过碱基交换反应产生 PS。在这项研究中,我们利用酿酒酵母异源表达系统筛选 cryptococcus PS 合酶 Cho1 的抑制剂, Cho1 是一种真菌特异性酶,对细胞活力至关重要。我们发现一种抗癌化合物博莱霉素是一种阳性候选物,它表现出一种依赖于磷脂的抗真菌作用。乙醇胺的补充可以恢复其对真菌生长的抑制作用。进一步探索作用机制表明,博莱霉素处理破坏了酵母细胞的线粒体膜,导致活性氧(ROS)的产生增加,而乙醇胺的补充有助于挽救博莱霉素诱导的损伤。我们的结果表明,博莱霉素并不是特异性地抑制 PS 合酶酶;然而,它可能通过破坏线粒体功能,即磷脂酰乙醇胺(PE)和磷脂酰胆碱(PC)的合成,来影响磷脂生物合成,这有助于细胞维持膜组成和功能。侵袭性真菌病原体导致严重的发病率和死亡率,每年有超过 150 万人死亡。由于真菌是真核生物,与宿主有许多细胞机制共享,因此我们对抗真菌药物的武器库非常有限,只有三类抗真菌药物可用。药物毒性和新出现的耐药性限制了它们的使用。因此,针对真菌生存、生长或毒力所必需的真菌特异性酶是开发新的抗真菌药物的一种策略。在这项研究中,我们开发了一个异源表达系统,用于筛选对 cryptococcus phosphatidylserine synthase, Cho1 的活性化合物, Cho1 是一种真菌特异性酶,在 C. neoformans 中对活力是必需的。我们证实了这种筛选方法的可行性,并确定了抗癌化合物博莱霉素在破坏线粒体功能和抑制磷脂合成方面的一个以前未被探索的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fc3/9602507/e2eb76553911/spectrum.00862-22-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验