Suppr超能文献

基于血液的代谢物谱-panel 用于区分卵巢癌与良性盆腔肿块。

A Blood-Based Metabolite Panel for Distinguishing Ovarian Cancer from Benign Pelvic Masses.

机构信息

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas.

Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.

出版信息

Clin Cancer Res. 2022 Nov 1;28(21):4669-4676. doi: 10.1158/1078-0432.CCR-22-1113.

Abstract

PURPOSE

To assess the contributions of circulating metabolites for improving upon the performance of the risk of ovarian malignancy algorithm (ROMA) for risk prediction of ovarian cancer among women with ovarian cysts.

EXPERIMENTAL DESIGN

Metabolomic profiling was performed on an initial set of sera from 101 serous and nonserous ovarian cancer cases and 134 individuals with benign pelvic masses (BPM). Using a deep learning model, a panel consisting of seven cancer-related metabolites [diacetylspermine, diacetylspermidine, N-(3-acetamidopropyl)pyrrolidin-2-one, N-acetylneuraminate, N-acetyl-mannosamine, N-acetyl-lactosamine, and hydroxyisobutyric acid] was developed for distinguishing early-stage ovarian cancer from BPM. The performance of the metabolite panel was evaluated in an independent set of sera from 118 ovarian cancer cases and 56 subjects with BPM. The contributions of the panel for improving upon the performance of ROMA were further assessed.

RESULTS

A 7-marker metabolite panel (7MetP) developed in the training set yielded an AUC of 0.86 [95% confidence interval (CI): 0.76-0.95] for early-stage ovarian cancer in the independent test set. The 7MetP+ROMA model had an AUC of 0.93 (95% CI: 0.84-0.98) for early-stage ovarian cancer in the test set, which was improved compared with ROMA alone [0.91 (95% CI: 0.84-0.98); likelihood ratio test P: 0.03]. In the entire specimen set, the combined 7MetP+ROMA model yielded a higher positive predictive value (0.68 vs. 0.52; one-sided P < 0.001) with improved specificity (0.89 vs. 0.78; one-sided P < 0.001) for early-stage ovarian cancer compared with ROMA alone.

CONCLUSIONS

A blood-based metabolite panel was developed that demonstrates independent predictive ability and complements ROMA for distinguishing early-stage ovarian cancer from benign disease to better inform clinical decision making.

摘要

目的

评估循环代谢物对卵巢癌风险算法 (ROMA) 进行改进,以提高卵巢囊肿女性卵巢癌风险预测的性能。

实验设计

对 101 例浆液性和非浆液性卵巢癌病例和 134 例良性盆腔肿块 (BPM) 患者的初始血清进行代谢组学分析。使用深度学习模型,开发了一个由七种癌症相关代谢物[二乙酰精胺、二乙酰精脒、N-(3-乙酰氨基丙基)吡咯烷-2-酮、N-乙酰神经氨酸、N-乙酰甘露糖胺、N-乙酰乳糖胺和羟基异丁酸]组成的面板,用于区分早期卵巢癌和 BPM。在 118 例卵巢癌病例和 56 例 BPM 患者的独立血清样本中评估了代谢物组的性能。进一步评估了该面板对 ROMA 性能的改善作用。

结果

在训练集中开发的 7 标志物代谢物组(7MetP)在独立测试集中对早期卵巢癌的 AUC 为 0.86(95%置信区间[CI]:0.76-0.95)。在测试集中,7MetP+ROMA 模型对早期卵巢癌的 AUC 为 0.93(95%CI:0.84-0.98),与 ROMA 单独使用相比有所提高[0.91(95%CI:0.84-0.98);似然比检验 P:0.03]。在整个标本集中,与 ROMA 单独使用相比,联合使用 7MetP+ROMA 模型对早期卵巢癌具有更高的阳性预测值(0.68 对 0.52;单侧 P<0.001)和更好的特异性(0.89 对 0.78;单侧 P<0.001)。

结论

开发了一种基于血液的代谢物组,该组具有独立的预测能力,并补充了 ROMA,可用于区分早期卵巢癌和良性疾病,从而更好地为临床决策提供信息。

相似文献

1
A Blood-Based Metabolite Panel for Distinguishing Ovarian Cancer from Benign Pelvic Masses.
Clin Cancer Res. 2022 Nov 1;28(21):4669-4676. doi: 10.1158/1078-0432.CCR-22-1113.
5
6
The use of HE4 in the prediction of ovarian cancer in Asian women with a pelvic mass.
Gynecol Oncol. 2013 Feb;128(2):239-44. doi: 10.1016/j.ygyno.2012.09.034. Epub 2012 Oct 10.
9
Serum human epididymis protein 4 and risk for ovarian malignancy algorithm as new diagnostic and prognostic tools for epithelial ovarian cancer management.
Cancer Epidemiol Biomarkers Prev. 2011 Dec;20(12):2496-506. doi: 10.1158/1055-9965.EPI-11-0635. Epub 2011 Oct 25.

引用本文的文献

1
Clinical utility of various liquid biopsy samples for the early detection of ovarian cancer: a comprehensive review.
Front Oncol. 2025 Jul 1;15:1594100. doi: 10.3389/fonc.2025.1594100. eCollection 2025.
2
Serum metabolic fingerprints encode functional biomarkers for ovarian cancer diagnosis: a large-scale cohort study.
EBioMedicine. 2025 May;115:105706. doi: 10.1016/j.ebiom.2025.105706. Epub 2025 Apr 23.
4
6
7
A metabolite-based liquid biopsy for detection of ovarian cancer.
Biomark Res. 2024 Aug 28;12(1):91. doi: 10.1186/s40364-024-00629-2.
8
Advances in artificial intelligence for the diagnosis and treatment of ovarian cancer (Review).
Oncol Rep. 2024 Mar;51(3). doi: 10.3892/or.2024.8705. Epub 2024 Jan 19.
9
c-MYC-Driven Polyamine Metabolism in Ovarian Cancer: From Pathogenesis to Early Detection and Therapy.
Cancers (Basel). 2023 Jan 19;15(3):623. doi: 10.3390/cancers15030623.

本文引用的文献

1
A MYC-Driven Plasma Polyamine Signature for Early Detection of Ovarian Cancer.
Cancers (Basel). 2021 Feb 22;13(4):913. doi: 10.3390/cancers13040913.
3
Insights into the role of sialylation in cancer progression and metastasis.
Br J Cancer. 2021 Jan;124(1):76-90. doi: 10.1038/s41416-020-01126-7. Epub 2020 Nov 4.
4
5
Elucidation of Functional Roles of Sialic Acids in Cancer Migration.
Front Oncol. 2020 Mar 31;10:401. doi: 10.3389/fonc.2020.00401. eCollection 2020.
6
Metabolic reprogramming and cancer progression.
Science. 2020 Apr 10;368(6487). doi: 10.1126/science.aaw5473.
8
Targeting Aberrant Sialylation to Treat Cancer.
Medicines (Basel). 2019 Oct 13;6(4):102. doi: 10.3390/medicines6040102.
10
Biomarkers and algorithms for diagnosis of ovarian cancer: CA125, HE4, RMI and ROMA, a review.
J Ovarian Res. 2019 Mar 27;12(1):28. doi: 10.1186/s13048-019-0503-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验