Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
Clin Cancer Res. 2022 Nov 1;28(21):4669-4676. doi: 10.1158/1078-0432.CCR-22-1113.
To assess the contributions of circulating metabolites for improving upon the performance of the risk of ovarian malignancy algorithm (ROMA) for risk prediction of ovarian cancer among women with ovarian cysts.
Metabolomic profiling was performed on an initial set of sera from 101 serous and nonserous ovarian cancer cases and 134 individuals with benign pelvic masses (BPM). Using a deep learning model, a panel consisting of seven cancer-related metabolites [diacetylspermine, diacetylspermidine, N-(3-acetamidopropyl)pyrrolidin-2-one, N-acetylneuraminate, N-acetyl-mannosamine, N-acetyl-lactosamine, and hydroxyisobutyric acid] was developed for distinguishing early-stage ovarian cancer from BPM. The performance of the metabolite panel was evaluated in an independent set of sera from 118 ovarian cancer cases and 56 subjects with BPM. The contributions of the panel for improving upon the performance of ROMA were further assessed.
A 7-marker metabolite panel (7MetP) developed in the training set yielded an AUC of 0.86 [95% confidence interval (CI): 0.76-0.95] for early-stage ovarian cancer in the independent test set. The 7MetP+ROMA model had an AUC of 0.93 (95% CI: 0.84-0.98) for early-stage ovarian cancer in the test set, which was improved compared with ROMA alone [0.91 (95% CI: 0.84-0.98); likelihood ratio test P: 0.03]. In the entire specimen set, the combined 7MetP+ROMA model yielded a higher positive predictive value (0.68 vs. 0.52; one-sided P < 0.001) with improved specificity (0.89 vs. 0.78; one-sided P < 0.001) for early-stage ovarian cancer compared with ROMA alone.
A blood-based metabolite panel was developed that demonstrates independent predictive ability and complements ROMA for distinguishing early-stage ovarian cancer from benign disease to better inform clinical decision making.
评估循环代谢物对卵巢癌风险算法 (ROMA) 进行改进,以提高卵巢囊肿女性卵巢癌风险预测的性能。
对 101 例浆液性和非浆液性卵巢癌病例和 134 例良性盆腔肿块 (BPM) 患者的初始血清进行代谢组学分析。使用深度学习模型,开发了一个由七种癌症相关代谢物[二乙酰精胺、二乙酰精脒、N-(3-乙酰氨基丙基)吡咯烷-2-酮、N-乙酰神经氨酸、N-乙酰甘露糖胺、N-乙酰乳糖胺和羟基异丁酸]组成的面板,用于区分早期卵巢癌和 BPM。在 118 例卵巢癌病例和 56 例 BPM 患者的独立血清样本中评估了代谢物组的性能。进一步评估了该面板对 ROMA 性能的改善作用。
在训练集中开发的 7 标志物代谢物组(7MetP)在独立测试集中对早期卵巢癌的 AUC 为 0.86(95%置信区间[CI]:0.76-0.95)。在测试集中,7MetP+ROMA 模型对早期卵巢癌的 AUC 为 0.93(95%CI:0.84-0.98),与 ROMA 单独使用相比有所提高[0.91(95%CI:0.84-0.98);似然比检验 P:0.03]。在整个标本集中,与 ROMA 单独使用相比,联合使用 7MetP+ROMA 模型对早期卵巢癌具有更高的阳性预测值(0.68 对 0.52;单侧 P<0.001)和更好的特异性(0.89 对 0.78;单侧 P<0.001)。
开发了一种基于血液的代谢物组,该组具有独立的预测能力,并补充了 ROMA,可用于区分早期卵巢癌和良性疾病,从而更好地为临床决策提供信息。