Zheng Sun, Jiejie Du, Yue Yao, Qi Meng, Huifeng Sun
IEEE Trans Med Imaging. 2023 Jan;42(1):66-78. doi: 10.1109/TMI.2022.3202910. Epub 2022 Dec 29.
In vivo application of intravascular photoacoustic (IVPA) imaging for coronary arteries is hampered by motion artifacts associated with the cardiac cycle. Gating is a common strategy to mitigate motion artifacts. However, a large amount of diagnostically valuable information might be lost due to one frame per cycle. In this work, we present a deep learning-based method for directly correcting motion artifacts in non-gated IVPA pullback sequences. The raw signal frames are classified into dynamic and static frames by clustering. Then, a neural network named Motion Artifact Correction (MAC)-Net is designed to correct motion in dynamic frames. Given the lack of the ground truth information on the underlying dynamics of coronary arteries, we trained and tested the network using a computer-generated dataset. Based on the results, it has been observed that the trained network can directly correct motion in successive frames while preserving the original structures without discarding any frames. The improvement in the visual effect of the longitudinal view has been demonstrated based on quantitative evaluation of the inter-frame dissimilarity. The comparison results validated the motion-suppression ability of our method comparable to gating and image registration-based non-learning methods, while maintaining the integrity of the pullbacks without image preprocessing. Experimental results from in vivo intravascular ultrasound and optical coherence tomography pullbacks validated the feasibility of our method in the in vivo intracoronary imaging scenario.
冠状动脉血管内光声(IVPA)成像的体内应用受到与心动周期相关的运动伪影的阻碍。门控是减轻运动伪影的常用策略。然而,由于每个周期一帧,大量有诊断价值的信息可能会丢失。在这项工作中,我们提出了一种基于深度学习的方法,用于直接校正非门控IVPA回撤序列中的运动伪影。通过聚类将原始信号帧分为动态帧和静态帧。然后,设计了一个名为运动伪影校正(MAC)-Net的神经网络来校正动态帧中的运动。鉴于缺乏关于冠状动脉潜在动力学的真实信息,我们使用计算机生成的数据集对网络进行了训练和测试。基于结果,观察到训练后的网络可以直接校正连续帧中的运动,同时保留原始结构,而不丢弃任何帧。基于帧间差异的定量评估,纵向视图的视觉效果得到了改善。比较结果验证了我们的方法与门控和基于图像配准的非学习方法相当的运动抑制能力,同时在不进行图像预处理的情况下保持回撤的完整性。体内血管内超声和光学相干断层扫描回撤的实验结果验证了我们的方法在体内冠状动脉成像场景中的可行性。