Suppr超能文献

幽门螺杆菌抗生素耐药机制的功能见解:基于基因互作网络和基于中心性的节点重要性分析。

Functional insights of antibiotic resistance mechanism in Helicobacter pylori: Driven by gene interaction network and centrality-based nodes essentiality analysis.

机构信息

Center for Bioinformatics and Biostatistics, Nitte (Deemed to Be University), Mangalore, 575018, Karnataka, India; Central Research Laboratory, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, 575018, Karnataka, India.

Central Research Laboratory, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, 575018, Karnataka, India.

出版信息

Microb Pathog. 2022 Oct;171:105737. doi: 10.1016/j.micpath.2022.105737. Epub 2022 Aug 28.

Abstract

Increased antibiotic resistance in Helicobacter pylori (H. pylori), a major human pathogen, constitutes a substantial threat to human health. Understanding the pathophysiology and development of antibiotic resistance can aid our battle with the infections caused by H. pylori. The aim of this study is to discover the high-impact key regulatory mechanisms and genes involved in antimicrobial drug resistance (AMR). In this study, we constructed a functional gene interaction network by integrating multiple sources of data related to antibiotic resistant genes (number-77) from H. pylori. The gene interaction network was assortative, with a hierarchical, scale-free topology enriched in a variety of gene ontology (GO) categories and KEGG pathways. Using an iterative clustering methodology, we identified a number of communities in the AMR gene network that comprised nine genes (sodB, groEL, gyrA, recA, polA, tuf, infB, rpsJ, and gyrB) that were present at the deepest level and hence were key regulators of AMR. Further, an antibiotic-resistant gene network-based centrality analysis revealed superoxide dismutase (sodB) as a bottleneck node in the network. Our findings suggested that sodB is critically enriched in the cellular response to oxidative stress, removal of superoxide radicals, cellular oxidant detoxification processes, cellular component biogenesis, response to reactive oxygen species, urea metabolic process, nitrogen cycle metabolic process and reactive oxygen species metabolic process. We demonstrated how the sodB, which are involved in the response to reactive oxygen species, urea metabolic process, nitrogen cycle metabolic process, reactive oxygen species metabolic process, regulated by Fur gene/proteins, claim a major authority over regulation and signal propagation in the AMR.

摘要

幽门螺杆菌(H. pylori)对抗生素的耐药性增加,对人类健康构成了重大威胁。了解抗生素耐药性的病理生理学和发展可以帮助我们对抗由 H. pylori 引起的感染。本研究旨在发现参与抗菌药物耐药(AMR)的高影响关键调控机制和基因。在这项研究中,我们通过整合与 H. pylori 中抗生素耐药基因(77 个)相关的多个数据源,构建了一个功能基因相互作用网络。基因相互作用网络是可分的,具有层次结构,无标度拓扑结构,富含各种基因本体论(GO)类别和 KEGG 途径。通过迭代聚类方法,我们在 AMR 基因网络中识别了多个社区,其中包含九个基因(sodB、groEL、gyrA、recA、polA、tuf、infB、rpsJ 和 gyrB),这些基因处于最深层次,因此是 AMR 的关键调控因子。此外,基于抗生素耐药基因网络的中心性分析表明超氧化物歧化酶(sodB)是网络中的瓶颈节点。我们的研究结果表明,sodB 在细胞对氧化应激、清除超氧自由基、细胞氧化剂解毒过程、细胞成分生物发生、对活性氧的反应、脲代谢过程、氮循环代谢过程和活性氧代谢过程中具有重要的作用。我们展示了 sodB 如何参与活性氧、脲代谢过程、氮循环代谢过程、活性氧代谢过程的反应,受 Fur 基因/蛋白调控,在 AMR 中对调节和信号传递具有主要权威。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验