Suppr超能文献

高盐环境改变 LPS 合成并诱导 出现耐药突变。

High salt condition alters LPS synthesis and induces the emergence of drug resistance mutations in .

机构信息

Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China.

Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China.

出版信息

Antimicrob Agents Chemother. 2024 Oct 8;68(10):e0058724. doi: 10.1128/aac.00587-24. Epub 2024 Sep 6.

Abstract

The burgeoning emergence of drug-resistant strains poses a significant challenge to the clinical success of eradication therapies and is primarily attributed to mutations within drug-targeting genes that lead to antibiotic resistance. This study investigated the effect of high salt conditions on the occurrence of drug-resistance mutations in . We found that high salt condition significantly amplifies the frequency of drug resistance mutations in . This can be chiefly attributed to our discovery indicating that high salt concentration results in elevated reactive oxygen species (ROS) levels, initiating DNA damage within . Mechanistically, high salt condition suppresses lipopolysaccharide (LPS) synthesis gene expression, inducing alterations in the LPS structure and escalating outer membrane permeability. This disruption of LPS synthesis attenuates the expression and activity of SodB, facilitates increased ROS levels, and consequently increases the drug resistance mutation frequency. Impairing LPS synthesis engenders a reduction in intracellular iron levels, leading to diminished holo-Fur activity and increased apo-Fur activity, which represses the expression of SodB directly. Our findings suggest a correlation between high salt intake and the emergence of drug resistance in the human pathogen , implying that dietary choices affect the risk of emergence of antimicrobial resistance.IMPORTANCEDrug resistance mutations mainly contribute to the emergence of clinical antibiotic-resistant a bacterium linked to stomach ulcers and cancer. In this study, we explored how elevated salt conditions influence the emergence of drug resistance in . We demonstrate that exhibits an increased antibiotic resistance mutation frequency when exposed to a high salt environment. We observed an increase in reactive oxygen species (ROS) under high salt conditions, which can cause DNA damage and potentially lead to mutations. Moreover, our results showed that high salt condition alters the bacterium's lipopolysaccharide (LPS) synthesis, leading to a reduced expression of SodB in a Fur-dependent manner. This reduction, in turn, elevates ROS levels, culminating in a higher frequency of drug-resistance mutations. Our research underscores the critical need to consider environmental influences, such as diet and lifestyle, in managing bacterial infections and combating the growing challenge of antibiotic resistance.

摘要

耐多药菌株的大量出现对根除治疗的临床成功构成了重大挑战,主要归因于药物靶点基因内的突变导致抗生素耐药性。本研究调查了高盐条件对 发生耐药突变的影响。我们发现,高盐条件显著增加了 中耐药突变的频率。这主要归因于我们的发现,即高盐浓度导致活性氧(ROS)水平升高,引发 内 DNA 损伤。从机制上讲,高盐条件抑制脂多糖(LPS)合成基因表达,导致 LPS 结构改变和外膜通透性增加。这种 LPS 合成的破坏减弱了 SodB 的表达和活性,促进了 ROS 水平的升高,从而增加了耐药突变的频率。LPS 合成受损导致细胞内铁水平降低,导致 holo-Fur 活性降低和 apo-Fur 活性增加,从而直接抑制 SodB 的表达。我们的研究结果表明,高盐摄入与人类病原体 中耐药性的出现之间存在相关性,这意味着饮食选择会影响抗菌药物耐药性出现的风险。重要的是,这种细菌与胃溃疡和癌症有关,耐药突变主要导致临床抗生素耐药性的出现。在这项研究中,我们探讨了升高的盐条件如何影响 中耐药性的出现。我们证明,当暴露于高盐环境时, 表现出增加的抗生素耐药突变频率。我们观察到高盐条件下活性氧(ROS)增加,这可能导致 DNA 损伤并潜在导致突变。此外,我们的结果表明,高盐条件改变了细菌的脂多糖(LPS)合成,导致 SodB 的表达以 Fur 依赖性方式降低。这种减少反过来又会增加 ROS 水平,导致耐药突变的频率更高。我们的研究强调了在管理细菌感染和应对日益增长的抗生素耐药性挑战时,需要考虑环境影响(如饮食和生活方式)的重要性。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验