Suppr超能文献

利用高光谱成像分析对白菜软腐病进行无损分类。

Nondestructive classification of soft rot disease in napa cabbage using hyperspectral imaging analysis.

机构信息

Hygienic Safety and Distribution Research Group, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju, 61755, Republic of Korea.

出版信息

Sci Rep. 2022 Aug 29;12(1):14707. doi: 10.1038/s41598-022-19169-6.

Abstract

Identification of soft rot disease in napa cabbage, an essential ingredient of kimchi, is challenging at the industrial scale. Therefore, nondestructive imaging techniques are necessary. Here, we investigated the potential of hyperspectral imaging (HSI) processing in the near-infrared region (900-1700 nm) for classifying napa cabbage quality using nondestructive measurements. We determined the microbiological and physicochemical qualitative properties of napa cabbage for intercomparison of HSI information, extracted HSI characteristics from hyperspectral images to predict and classify freshness, and established a novel approach for classifying healthy and rotten napa cabbage. The second derivative Savitzky-Golay method for data preprocessing was implemented, followed by wavelength selection using variable importance in projection scores. For multivariate data of the classification models, partial least square discriminant analysis (PLS-DA), support vector machine (SVM), and random forests were used for predicting cabbage conditions. The SVM model accurately distinguished the cabbage exhibiting soft rot disease symptoms from the healthy cabbage. This study presents the potential of HSI systems for separating soft rot disease-infected napa cabbages from healthy napa cabbages using the SVM model, especially under the most effective wavelengths (970, 980, 1180, 1070, 1120, and 978 nm), prior to processing. These results are applicable to industrial multispectral images.

摘要

在工业规模上,鉴定韩国泡菜的主要原料——白菜的软腐病具有挑战性。因此,需要无损成像技术。在这里,我们研究了近红外区域(900-1700nm)高光谱成像(HSI)处理在使用无损测量技术分类白菜质量方面的潜力。我们确定了白菜的微生物学和物理化学定性特性,以便比较 HSI 信息,从高光谱图像中提取 HSI 特征来预测和分类新鲜度,并建立了一种新的方法来分类健康和腐烂的白菜。采用二阶导数 Savitzky-Golay 方法进行数据预处理,然后使用投影得分变量重要性选择波长。对于分类模型的多元数据,使用偏最小二乘判别分析(PLS-DA)、支持向量机(SVM)和随机森林进行白菜状况的预测。SVM 模型能够准确地区分出现软腐病症状的白菜和健康的白菜。本研究提出了使用 SVM 模型通过 HSI 系统从健康的白菜中分离感染软腐病的白菜的潜力,特别是在最有效波长(970、980、1180、1070、1120 和 978nm)下,这在处理之前是可行的。这些结果适用于工业多光谱图像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1ab/9424267/beed75d92870/41598_2022_19169_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验