Suppr超能文献

利用高光谱成像技术对腌制泡菜中的盐分水平进行快速无损分类

Rapid and non-destructive classification of salinity levels in brined kimchi cabbage using hyperspectral imaging.

作者信息

Song Hyeyeon, Kim Myounghwan, Yoo Kwang Sun, Ha Ji-Hyoung

机构信息

Hygienic Safety and Materials Research Group, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju, Republic of Korea.

AI Research, Elroilab Co., Ltd., 28 Digital-ro 30-gil, Guro-gu, Seoul, Republic of Korea.

出版信息

Heliyon. 2024 Nov 29;10(23):e40817. doi: 10.1016/j.heliyon.2024.e40817. eCollection 2024 Dec 15.

Abstract

In this study, we demonstrate the potential of a non-destructive hyperspectral imaging processing method in the near-infrared (NIR) region (874-1734 nm) for classifying the quality of brined kimchi cabbage. The salinity level of brined kimchi cabbage is an important indicator of consumer preference and the quality of kimchi. Hence, we compared the water content and salinity of brined kimchi cabbage via hyperspectral data. We extracted the optimal wavelengths from the hyperspectral image dataset to classify the salinity level of the predicted brined kimchi cabbage, and thus, established a novel approach for classifying kimchi samples into quality-unacceptable and quality-acceptable groups. Standard normal variate and multiplicative scatter correction (MSC) were used for pathlength correction. The Savitzky-Golay first and second derivatives were used for the deconvolution of the raw spectral data. The experimental results confirmed that the decision tree model combined with MSC pathlength correction and Savitzky-Golay first derivative preprocessing was the best classification model. The proposed hyperspectral image-NIR system can be applied to the detection of salinity during industrial kimchi manufacturing.

摘要

在本研究中,我们展示了一种近红外(NIR)区域(874 - 1734纳米)的无损高光谱成像处理方法在对腌制泡菜白菜质量进行分类方面的潜力。腌制泡菜白菜的盐度水平是消费者偏好和泡菜质量的重要指标。因此,我们通过高光谱数据比较了腌制泡菜白菜的水分含量和盐度。我们从高光谱图像数据集中提取了最佳波长,以对预测的腌制泡菜白菜的盐度水平进行分类,从而建立了一种将泡菜样本分为质量不可接受组和质量可接受组的新方法。使用标准正态变量和多元散射校正(MSC)进行光程校正。使用Savitzky - Golay一阶和二阶导数对原始光谱数据进行去卷积。实验结果证实,结合MSC光程校正和Savitzky - Golay一阶导数预处理的决策树模型是最佳分类模型。所提出的高光谱图像 - NIR系统可应用于工业泡菜生产过程中的盐度检测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验