Dep. of Civil and Environmental, Univ. de la Costa, Calle 58 #55-66, Barranquilla, Atlántico, 080002, Colombia.
Dep. of Earth Sciences, Univ. of Manitoba, Winnipeg, Manitoba, R3T2N2, Canada.
J Environ Qual. 2022 Nov;51(6):1103-1117. doi: 10.1002/jeq2.20409. Epub 2022 Oct 18.
This review summarizes our current knowledge on the health and environmental impact as well as the mineralogical and geochemical composition of nanoparticles (NPs) associated with coal fires. It will furthermore recommend new sampling and characterization protocols to gain a better understanding of the various types of NPs that are formed either through high-temperature nucleation and alteration processes or via low-temperature dissolution-reprecipitation and weathering processes. Coal fires affect the immediate environment of coal-producing areas and produce positive and negative feedback to climate change through the emission of carbon- and sulfate-bearing gases and aerosols, respectively. Nanoparticles form during and after coal fires. They are composed of mainly soot and tar particles as well as amorphous phases, minerals, and complex mixtures of amorphous phases and minerals. It is recommended that NPs for mineralogical studies should be collected using impactors (a new generation of collectors for particulate matter, such as the TPS100 NP sampler) or that borosilicate filters at the openings of pipes and chambers be used to collect and measure gases emitted by coal fires. Furthermore, assemblages of NPs occurring at the mouths of coal fire vents should be examined using a combination of focused ion beam (FIB) technology and transmission electron microscopy (TEM), and those containing ion- or electron-beam sensitive phases should be examined with the corresponding cryo-techniques, such as cryo-FIB, cryo-ion mill, and cryo-TEM. The mineralogical and chemical composition of NP-bearing bulk samples should be examined with spectroscopy techniques such as X-ray photoelectron spectroscopy, C nuclear magnetic resonance spectroscopy, or time-of-flight secondary ion mass spectroscopy.
这篇综述总结了我们目前对与煤火相关的纳米颗粒(NPs)的健康和环境影响以及矿物学和地球化学组成的了解。此外,它还将推荐新的采样和表征方案,以更好地了解通过高温成核和改变过程或通过低温溶解-再沉淀和风化过程形成的各种类型的 NPs。煤火影响着产煤地区的周边环境,并通过分别排放含碳和含硫酸盐的气体和气溶胶,对气候变化产生积极和消极的反馈。纳米颗粒在煤火期间和之后形成。它们主要由烟尘和焦油颗粒以及非晶相、矿物以及非晶相和矿物的复杂混合物组成。建议使用撞击器(一种用于收集颗粒物的新一代收集器,如 TPS100 NP 采样器)收集用于矿物学研究的 NPs,或者使用硼硅酸盐过滤器收集和测量煤火排放的气体在管道和腔室的开口处。此外,应使用聚焦离子束(FIB)技术和透射电子显微镜(TEM)组合检查在煤火通风口处出现的 NPs 组合,并且应使用相应的冷冻技术(例如冷冻 FIB、冷冻离子铣削和冷冻 TEM)检查含有离子或电子束敏感相的 NPs。应使用光谱技术(例如 X 射线光电子能谱、C 核磁共振谱或飞行时间二次离子质谱)检查含 NP 的散装样品的矿物学和化学组成。