Chen Zonghai
Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA.
Chem Commun (Camb). 2022 Sep 13;58(73):10127-10135. doi: 10.1039/d2cc03970b.
Parasitic reactions between delithiated cathode materials and non-aqueous electrolytes have been a major barrier that limits the upper cutoff potential of cathode materials. It is of great importance to suppress such parasitic reactions to unleash the high-energy-density potential of high voltage cathode materials. Although major effort has been made to identify the chemical composition of the cathode electrolyte interface using various cutting edge characterization tools, the chemical nature of parasitic reactions remains a puzzle. This severely hinders the rational development of stable high voltage cathode/electrolyte pairs for high-energy density lithium-ion batteries. This feature article highlights our latest effort in understanding the chemical/electrochemical role of the cathode electrolyte interface using protons as a chemical tracer for parasitic reactions.
脱锂正极材料与非水电解质之间的寄生反应一直是限制正极材料上限截止电位的主要障碍。抑制此类寄生反应对于释放高压正极材料的高能量密度潜力至关重要。尽管人们已经付出了巨大努力,使用各种前沿表征工具来确定正极电解质界面的化学成分,但寄生反应的化学本质仍然是个谜。这严重阻碍了用于高能量密度锂离子电池的稳定高压正极/电解质对的合理开发。这篇专题文章重点介绍了我们在利用质子作为寄生反应的化学示踪剂来理解正极电解质界面的化学/电化学作用方面的最新努力。