Suppr超能文献

设计日常生活研究,将经验采样法与平行数据相结合。

Designing daily-life research combining experience sampling method with parallel data.

机构信息

Department of Neurosciences, Center for Contextual Psychiatry, KU Leuven, Leuven, Belgium.

Department of Neurosurgery, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.

出版信息

Psychol Med. 2024 Jan;54(1):98-107. doi: 10.1017/S0033291722002367. Epub 2022 Aug 30.

Abstract

BACKGROUND

Ambulatory monitoring is gaining popularity in mental and somatic health care to capture an individual's wellbeing or treatment course in daily-life. Experience sampling method collects subjective time-series data of patients' experiences, behavior, and context. At the same time, digital devices allow for less intrusive collection of more objective time-series data with higher sampling frequencies and for prolonged sampling periods. We refer to these data as parallel data. Combining these two data types holds the promise to revolutionize health care. However, existing ambulatory monitoring guidelines are too specific to each data type, and lack overall directions on how to effectively combine them.

METHODS

Literature and expert opinions were integrated to formulate relevant guiding principles.

RESULTS

Experience sampling and parallel data must be approached as one holistic time series right from the start, at the study design stage. The fluctuation pattern and volatility of the different variables of interest must be well understood to ensure that these data are compatible. Data have to be collected and operationalized in a manner that the minimal common denominator is able to answer the research question with regard to temporal and disease severity resolution. Furthermore, recommendations are provided for device selection, data management, and analysis. Open science practices are also highlighted throughout. Finally, we provide a practical checklist with the delineated considerations and an open-source example demonstrating how to apply it.

CONCLUSIONS

The provided considerations aim to structure and support researchers as they undertake the new challenges presented by this exciting multidisciplinary research field.

摘要

背景

在精神和躯体保健中,动态监测越来越受欢迎,以捕捉个体在日常生活中的整体健康或治疗过程。经验采样方法收集患者体验、行为和环境的主观时间序列数据。同时,数字设备允许以较低的侵入性收集更多客观的时间序列数据,具有更高的采样频率和更长的采样时间。我们将这些数据称为并行数据。将这两种数据类型结合起来有望彻底改变医疗保健。然而,现有的动态监测指南对于每种数据类型都过于具体,缺乏关于如何有效结合这些数据的总体指导。

方法

综合文献和专家意见,制定相关指导原则。

结果

从研究设计阶段开始,经验采样和并行数据必须被视为一个整体的时间序列。必须充分了解感兴趣的不同变量的波动模式和不稳定性,以确保这些数据具有兼容性。必须以能够以最小的共同标准回答有关时间分辨率和疾病严重程度的研究问题的方式收集和操作数据。此外,还提供了设备选择、数据管理和分析的建议。整个过程还强调了开放科学实践。最后,我们提供了一个带有明确注意事项的实用清单,并提供了一个开源示例,演示如何应用它。

结论

所提供的考虑因素旨在为研究人员提供结构和支持,以应对这个令人兴奋的多学科研究领域所带来的新挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验